CTR_GBDT_LR

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 融合方案<br />数据源:<br />数据大小:770 KB<br />字段数量:20<br />使用组件:拆分,读数据表,特征编码<br />
相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
29天前
|
机器学习/深度学习 存储 搜索推荐
GBDT+LR简介
GBDT+LR简介
30 0
|
机器学习/深度学习
推理(Inference)与预测(Prediction)
推理(Inference)与预测(Prediction)
491 1
推理(Inference)与预测(Prediction)
|
测试技术 计算机视觉
sklearn.model_selection.learning_curve介绍(评估多大的样本量用于训练才能达到最佳效果)
sklearn.model_selection.learning_curve介绍(评估多大的样本量用于训练才能达到最佳效果)
|
算法 固态存储 计算机视觉
目标检测的Tricks | 【Trick3】IoU loss与focal loss(包含一些变体介绍)
目标检测的Tricks | 【Trick3】IoU loss与focal loss(包含一些变体介绍)
474 0
目标检测的Tricks | 【Trick3】IoU loss与focal loss(包含一些变体介绍)
|
机器学习/深度学习 存储 算法
基于Fashion-MNIST数据集的模型剪枝(上)
1. 介绍 1.1 背景介绍 目前在深度学习中存在一些困境,对于移动是设备来说,主要是算不好;穿戴设备算不来;数据中心,大多数人又算不起 。这就是做模型做压缩与加速的初衷。
476 0
基于Fashion-MNIST数据集的模型剪枝(上)
|
机器学习/深度学习 数据中心
基于Fashion-MNIST数据集的模型剪枝(下)
1. 介绍 1.1 背景介绍 目前在深度学习中存在一些困境,对于移动是设备来说,主要是算不好;穿戴设备算不来;数据中心,大多数人又算不起 。这就是做模型做压缩与加速的初衷。
138 0
基于Fashion-MNIST数据集的模型剪枝(下)
|
机器学习/深度学习 算法 Python
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能
DL之DNN:自定义MultiLayerNet(5*100+ReLU+SGD/Momentum/AdaGrad/Adam四种最优化)对MNIST数据集训练进而比较不同方法的性能
|
机器学习/深度学习
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD,weight_decay】对Mnist数据集训练来抑制过拟合
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD,weight_decay】对Mnist数据集训练来抑制过拟合
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD,weight_decay】对Mnist数据集训练来抑制过拟合
|
机器学习/深度学习 算法 数据库
DL之NN/Average_Darkness/SVM:手写数字图片识别(本地数据集50000训练集+数据集加4倍)比较3种算法Average_Darkness、SVM、NN各自的准确率
DL之NN/Average_Darkness/SVM:手写数字图片识别(本地数据集50000训练集+数据集加4倍)比较3种算法Average_Darkness、SVM、NN各自的准确率
DL之NN/Average_Darkness/SVM:手写数字图片识别(本地数据集50000训练集+数据集加4倍)比较3种算法Average_Darkness、SVM、NN各自的准确率
|
机器学习/深度学习
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD】对Mnist数据集训练来理解过拟合现象
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD】对Mnist数据集训练来理解过拟合现象
DL之DNN:利用MultiLayerNet模型【6*100+ReLU+SGD】对Mnist数据集训练来理解过拟合现象

相关实验场景

更多
下一篇
无影云桌面