大数据,大安全问题

本文涉及的产品
数据安全中心,免费版
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

大数据向安全领域发起严峻挑战

Intetix Foundation(英明泰思基金会)由从事数据科学、非营利组织和公共政策研究的中国学者发起成立,致力于通过数据科学改善人类社会和自然环境。通过联络、动员中美最顶尖的数据科学家和社会科学家,以及分布在全球的志愿者,我们创造性地践行着我们的使命:为美好生活洞见数据价值。

在大数据时代,各行各业都迎来了空前的机遇。通过利用多元的数据,科学家,高管,产品经理,营销人员等可以制定更明智的计划和决策,探索新的优化方式,并实现突破性的创新。但是,如果没有适时建立起保障数据安全和加密的系统,大数据也可能意味着大问题。

大数据安全的各个维度

为了建立全面的大数据安全系统,企业与组织的管理者必须解决以下几个方面的问题:

数据来源——为了充分利用大数据的优势,要对各类型的数据物尽其用,这其中包括结构化数据(各类应用和数据库,如企业ERP、财务系统等)和非结构化数据(各种不同类型的文件,如办公文档、文本、图片等)。这些数据的来源可谓是五花八门,像是企业资源规划系统,客户关系管理平台,视频文件,电子表格,社交媒体等皆可成为数据来源。此外,还有更多的数据源纷至沓来。你也许不知道明天新的数据源又会从何而来,但可以肯定的是,你会得到更丰富多样的数据源的帮助。这些大数据源可能包含个人身份信息,支付卡数据,知识产权,健康档案等。因此,需要对收集到的数据源进行保护以符合安全政策和规定。

大数据框架——无论是在Hadoop, MongoDB,NoSQL, Teradata,还是其他系统的大数据环境中都含有大量的可被操控的敏感数据。但是它们不仅存在于大数据节点中,而且还分布于系统日志文件,配置文件,错误日志中等。

数据分析——借助数据分析可以使大数据最终转化为企业优化和创新的成果。数据分析结果可以在商业智能仪表盘或数据分析报告中展示,并可按需查看。对一些企业来讲,大数据分析可能是其最敏感的资产。一方面,情报工作提供了关键的竞争优势;另一方面,如果情报落入别有用心之人手中,则会陷入巨大的竞争风险中。

因此,我们必须认识到对商业十分宝贵的大数据也会成为居心叵测之人的工具。冷酷无情的网络罪犯或是心怀愤懑的系统管理员也许会利用大数据来快速收敛不义之财。针对大数据安全的各个维度(以及各个维度中大量的数据分析成果、系统、服务等),建立有效的安全机制至关重要且充满挑战。

此外,由于与大数据环境相联系的广泛需求处于不断波动过程中,许多组织利用基于云技术的服务平台,以支持他们的大数据项目。但是对于这些在云端运行的大数据环境的组织,安全管理的任务变得更加困难。在云端,安全团队将可能面临供应商基础设施管理人员的威胁,曝光给云端其他组织的风险以及一系列附加风险。

传统加密途经的局限性

虽然现在有很多加密产品,但是大数据加密所面临的真正的挑战在于大多数加密产品只能解决某一具体方面的问题。例如,你可以在数据库中使用供应商提供的透明数据加密技术,但是当数据导出到大数据环境后会发生什么呢?另外,其他的数据来源和系统又怎么样?你还要知道供应商将秘钥存放在哪里,是否与数据存放在一起?

虽然一些厂商提供了大数据加密功能,但是这些产品只能保护特定的大数据节点,而对与数据环境相契合的原始数据源或从数据环境得出的分析结果无能为力。此外,这些大数据加密产品甚至不能保护所有与大数据环境相关的日志文件和配置信息。

最终,由于这些大数据安全措施彼此孤立,IT团队不得不处理繁多的秘钥和出台不同的管理政策。这增加了管理工作量,也让大数据安全措施难以统一标准。此外,在处理密集任务时,这些不统一的加密方式对大数据环境的性能也是一个大挑战。

通过伏尔米公司保卫大数据环境安全

伏尔米公司对大数据安全问题的解决方法保障了各个组织能够使大数据分析带来的效益最大化——同时也使敏感数据的安全问题最小化,满足了合规部的需求。

伏尔米数据安全平台提供了信息粒度控制、强大的加密技术,以及组织需要用来保障大数据环境中敏感数据安全的综合保险——覆盖了大数据的来源、基础设施以及分析结果。

通过传递覆盖所有这些方面的唯一安全解决方案,伏尔米公司保障了安全部门可以通过集中控制来使效率和依从性达到最大化。

伏尔米公司数据安全平台提供了大数据加密、密钥管理以及访问控制的功能,以部分产品共享一个共同的、可扩展的基础设施为特征。除此之外,这个解决方案通过访问用户、使用过程和应用程序的数据,可以生成安全情报。

保护大数据来源

如同之前已经强调过的,为了争取大数据主动权,组织可以利用各类来自不同领域的数据,包括结构数据和非结构数据。从数据库、系统日志、电子数据表和其他不同系统中得到的数据会注入到大数据环境中。为了保障这些不同数据来源的数据安全性,组织可以用伏尔米公司提供的以下解决方法:

伏尔米透明数据加密技术——这个产品加密文件并控制了文件系统的访问权限。这个加密解决方案简单易行,因为它不需要对应用程序作出任何的改变。

伏尔米应用加密技术——通过这个产品,你可以在将应用程式加入数据库前,将其中特定的栏目加密。通过加密特定的栏目,你可以保证特殊敏感的领域保持隐藏状态。即使在该部分已经导入大数据环境且被处理后,加密项依然可以保持隐藏状态。

保卫大数据结构安全

在大数据环境中,数据在无数的节点中被惯性的重复和迁移。另外,敏感信息会被储存在系统的运行记录、配置文件、磁盘缓存及其他一些地方中。

伏尔米透明加密技术有效的保护了这些地方的数据,其中包括:传递加密、特权用户的访问控制和安全情报。

除此之外,通过伏尔米对Teradata数据库的保护,你可以获得最复杂的粒装置控制,来保护你在Teradata的敏感资产,同时使你可以在大数据投资中获得最大化的商业效益。

保卫大数据分析安全

大数据输出有许多形式,包括按需仪表盘,自动化报告和即席查询。这些输出经常包涵对于一个组织来说十分重要的知识产权,以及一个潜在的威胁。为了向这些机密产业提供大数据分析,安全团队可以使用以下的解决方法:

l 伏尔米透明数据加密技术——这项加密产品可以轻易地被设置在服务器上,同时可以加密大数据输出并监控和控制可以访问大数据的用户。

l 伏尔米应用加密技术技术——你可以通过这项加密产品保护由数据分析程序产生的特定领域。
本文转自d1net(转载)

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
7月前
|
人工智能 安全 算法
AI与大数据:智慧城市安全的护航者与变革引擎
AI与大数据:智慧城市安全的护航者与变革引擎
221 1
|
7月前
|
安全 大数据 Java
elasticsearch|大数据|低版本的elasticsearch集群的官方安全插件x-pack的详解
elasticsearch|大数据|低版本的elasticsearch集群的官方安全插件x-pack的详解
153 0
|
1月前
|
存储 安全 大数据
大数据隐私保护:用户数据的安全之道
【10月更文挑战第31天】在大数据时代,数据的价值日益凸显,但用户隐私保护问题也愈发严峻。本文探讨了大数据隐私保护的重要性、面临的挑战及有效解决方案,旨在为企业和社会提供用户数据安全的指导。通过加强透明度、采用加密技术、实施数据最小化原则、加强访问控制、采用隐私保护技术和提升用户意识,共同推动大数据隐私保护的发展。
|
1月前
|
存储 安全 大数据
|
4月前
|
存储 监控 安全
大数据架构设计原则:构建高效、可扩展与安全的数据生态系统
【8月更文挑战第23天】大数据架构设计是一个复杂而系统的工程,需要综合考虑业务需求、技术选型、安全合规等多个方面。遵循上述设计原则,可以帮助企业构建出既高效又安全的大数据生态系统,为业务创新和决策支持提供强有力的支撑。随着技术的不断发展和业务需求的不断变化,持续优化和调整大数据架构也将成为一项持续的工作。
|
4月前
|
安全 关系型数据库 MySQL
揭秘MySQL海量数据迁移终极秘籍:从逻辑备份到物理复制,解锁大数据迁移的高效与安全之道
【8月更文挑战第2天】MySQL数据量很大的数据库迁移最优方案
778 17
|
5月前
|
分布式计算 安全 大数据
HAS插件式Kerberos认证框架:构建安全可靠的大数据生态系统
在教育和科研领域,研究人员需要共享大量数据以促进合作。HAS框架可以提供一个安全的数据共享平台,确保数据的安全性和合规性。
|
5月前
|
SQL 安全 大数据
如何安全的大数据量表在线进行DDL操作
如何安全的大数据量表在线进行DDL操作
73 0
如何安全的大数据量表在线进行DDL操作
|
6月前
|
机器学习/深度学习 自然语言处理 监控
金融行业的大数据风控模型:构建安全高效的信用评估体系
金融机构借助大数据风控提升信贷效率,通过数据收集、清洗、特征工程、模型构建与评估来识别风险。关键技术涉及机器学习、深度学习、NLP和实时处理。以下是一个Python风控模型构建的简例,展示了从数据预处理到模型训练、评估的过程,并提及实时监控预警的重要性。该文旨在阐述大数据风控的核心要素和关键技术,并提供基础的代码实现概念。【6月更文挑战第23天】
1048 8
|
7月前
|
人工智能 安全 数据挖掘
AI大数据分析对安全隐私的保护
AI大数据分析对安全隐私的保护非常重要。随着大数据技术和人工智能的发展,个人和企业的数据越来越容易被收集和分析。这种数据分析可以为企业提供有价值的洞察和决策支持,但同时也带来了安全隐私的风险。