基于MPPT最大功率跟踪和SVPWM的光伏三相并网逆变器simulink建模与仿真

简介: 本课题基于Simulink建模与仿真,研究了光伏三相并网逆变器。系统包括PV模块、MPPT模块、SVPWM模块和电网模块。通过MPPT确保光伏阵列始终工作在最大功率点,SVPWM生成高质量的三相电压输出,提高能量转换效率。仿真结果展示了不同光照条件下系统的输出电压、功率及并网性能。核心程序基于MATLAB2022a实现。

1.课题概述
基于MPPT最大功率跟踪和SVPWM的光伏三相并网逆变器simulink建模与仿真。包括PV模块,MPPT模块,SVPWM模块,电网模块等。

2.系统仿真结果
1不同光照大小的输出电压

f025a54a759f0f28c0611020c5f48c18_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

2不同光照大小的输出功率

522896bad39845ca7298422ef8dd9fb9_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3不同光照大小的有功功率-无功功率

ee7f83a3a62e9a425d35a94963de4a43_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

4不同光照大小的直流母线实时电压

47c721a29afa7b3aea5e02846c38fd8a_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

5不同光照大小的并网电压电流

e54ba410648c036c0f056b360ba0aab7_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

3.核心程序与模型
版本:MATLAB2022a

604e15f120e023f79cb7da1379587f6b_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.jpg

4.系统原理简介
光伏三相并网逆变器是太阳能光伏系统中的关键组成部分,负责将光伏电池板产生的直流电转换为符合电网要求的三相交流电,并有效地馈入电网。这个过程中,最大功率点跟踪(Maximum Power Point Tracking, MPPT)技术和空间矢量脉宽调制(Space Vector Pulse Width Modulation, SVPWM)技术起到了至关重要的作用。

  MPPT技术的目的是确保光伏阵列始终工作在其最大功率点(MPP),即使在光照强度变化时也能保持高效率。光伏电池的输出特性曲线呈现非线性,其最大功率点随光照强度和温度变化而移动。MPPT算法的任务是实时追踪并锁定这个点,以最大化能量转换效率。

   SVPWM是一种先进的PWM调制策略,用于生成近似正弦波形的三相电压输出。与传统的SPWM(正弦脉宽调制)相比,SVPWM能更高效地利用开关器件,减少谐波含量,提高输出电压质量。

1816ceb3a8401d8c0c675d6aabc3f1da_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   在实际应用中,首先通过MPPT算法调节DC-DC升压转换器的占空比,使光伏电池工作在MPP处,然后将稳定提升后的直流电压输入到基于SVPWM的三相逆变器部分。逆变器根据电网频率和电压要求,通过SVPWM算法产生高质量的三相交流电,经滤波后与电网同步并网。
相关文章
|
机器学习/深度学习 传感器 算法
【太阳能多电平逆变器】采用SPWM技术的太阳能供电多电平逆变器研究(simulink)
【太阳能多电平逆变器】采用SPWM技术的太阳能供电多电平逆变器研究(simulink)
|
17小时前
|
算法
基于爬山法MPPT最大功率跟踪算法的光伏发电系统simulink建模与仿真
本课题基于爬山法MPPT算法,对光伏发电系统进行Simulink建模与仿真。使用MATLAB2022a版本,通过调整光伏电池的工作状态以实现最大功率输出。爬山法通过逐步优化工作点,确保光伏系统在不同条件下均能接近最大功率点。仿真结果显示该方法的有效性,验证了模型的正确性和可行性。
|
2月前
|
算法 调度 SoC
基于飞轮和蓄电池的混合储能充放电控制系统simulink建模与仿真
本研究针对基于飞轮和蓄电池的混合储能充放电控制系统进行Simulink建模与仿真,通过改进控制算法显著提升系统性能。仿真结果显示,改进后的算法不仅提高了充电效率,缩短了充电时间,还优化了电池从放电到充电的切换过程,有效减少了电流过冲现象,延长了蓄电池的使用寿命。此外,飞轮储能的速度和稳定性也得到了明显改善。系统采用MATLAB2022a版本进行开发,详细介绍了飞轮和蓄电池储能系统的原理及其数学模型。
|
3月前
|
Web App开发
风力发电电网系统的simulink建模与仿真
本课题基于MATLAB2022a的Simulink平台,对风力发电电网系统进行建模与仿真。系统通过叶片捕获风能,转化为机械能再转化为电能,风速与输出功率关系遵循伯努利定律和叶素理论。电力电子变换器将交流电转换为适合电网接入的电压和频率,并网控制策略确保系统与电网同步。
|
6月前
|
算法
基于MPPT最大功率跟踪算法的涡轮机控制系统simulink建模与仿真
**摘要:** 本课题构建了基于Simulink的涡轮机MPPT控制系统模型,采用爬山法追踪最大功率点,仿真展示MPPT控制效果、功率及转速变化。使用MATLAB2022a进行仿真,结果显示高效跟踪性能。MPPT算法确保系统在不同条件下的最优功率输出,通过调整涡轮参数如转速,匹配功率-转速曲线的峰值。该方法借鉴自光伏系统,适应涡轮机的变速操作。
太阳能光伏电池的simulink建模与仿真
本课题研究了太阳能光伏电池在不同光照温度和光照强度下的Simulink建模与仿真,分析了光伏电池的U-I特性和P-V特性曲线。通过MATLAB 2022a进行仿真,展示了不同温度下的特性曲线变化,揭示了温度对光伏电池性能的影响。核心原理包括光生电效应、PN结的形成与工作机理,以及载流子的产生、分离和收集过程。
|
3月前
|
算法 流计算
基于MPPT的太阳能光伏电池simulink性能仿真,对比扰动观察法,增量电导法,恒定电压法
本课题在Simulink中实现基于MPPT的太阳能光伏电池,并对比了扰动观察法、增量电导法和恒定电压法三种MPPT方法。通过系统仿真,展示了不同算法下的性能差异。使用MATLAB 2022a版本进行建模和仿真。MPPT技术通过实时调整光伏系统的工作点,使其始终工作在最大功率点附近,从而最大化输出功率。扰动观察法、增量电导法和恒定电压法分别通过不同的机制实现这一目标。
|
4月前
|
算法
基于PSO优化的MPPT最大功率跟踪光伏发电系统simulink仿真
本课题在Simulink中构建了基于粒子群优化(PSO)的最大功率点跟踪(MPPT)光伏发电系统,包括光伏模块、MPPT模块、PSO优化模块及电路模块。PSO模块采用Matlab编程并在Simulink中调用。系统通过优化算法在复杂环境下实现高效MPPT。仿真结果显示该系统具有良好的性能。版本:MATLAB2022a。
|
4月前
|
算法
基于simulink的光伏并网逆变器电网系统建模与仿真
本课题使用Simulink实现光伏并网逆变器的建模与仿真,该逆变器负责将光伏电池板产生的直流电转换为与电网同步的交流电。系统通过最大功率点跟踪(MPPT)、DC-DC转换、DC-AC转换及滤波处理,确保电能质量并与电网同步。Simulink模型基于MATLAB 2022a版本构建。
|
5月前
|
算法 芯片
基于MPPT最大功率跟踪算法的光伏并网发电系统simulink仿真
本项目采用Simulink仿真构建基于MPPT的最大功率跟踪光伏并网发电系统,自行建立PV模型而非使用内置模块。系统包含MPPT控制器、PI控制器、锁相环及逆变器等,实现光伏阵列在各种条件下高效运行于最大功率点。仿真结果显示光伏并网输出的电流(Ipv)、电压(Upv)及功率(Ppv)波形。通过闭环控制,系统持续调整以维持最佳功率输出,有效提升光伏系统的整体效能和环境适应性。