Micro LLAMA:教学版 LLAMA 3模型实现,用于学习大模型的核心原理

本文涉及的产品
NLP自然语言处理_基础版,每接口每天50万次
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: Micro LLAMA是一个精简的教学版LLAMA 3模型实现,旨在帮助学习者理解大型语言模型的核心原理。该项目仅约180行代码,便于理解和学习。Micro LLAMA基于LLAMA 3中最小的8B参数模型,适合对深度学习和模型架构感兴趣的研究者和学生。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 教学目的:Micro LLAMA主要作为教学工具,帮助理解大型语言模型的工作原理。
  2. 代码简洁:项目代码仅约180行,便于阅读和理解复杂的模型架构。
  3. 易于实验:支持用户在没有高性能计算资源的情况下进行实验和测试。

正文(附运行示例)

Micro LLAMA 是什么

公众号: 蚝油菜花 - micro_llama

Micro LLAMA是精简的教学版LLAMA 3模型实现,能帮助学习者理解大型语言模型架构。整个项目仅约180行代码,便于理解和学习。Micro LLAMA用的是LLAMA 3中最小的8B参数模型,模型本身需15GB存储空间,运行时约需30GB内存。代码默认在CPU上运行,需注意内存消耗。

Micro LLAMA基于micro_llama.py文件提供模型代码,基于micro_llama.ipynb笔记本引导用户探索。Micro LLAMA适合对深度学习和模型架构感兴趣的研究者和学生。

Micro LLAMA 的主要功能

  • 教学目的:Micro LLAMA的主要功能是作为教学工具,帮助学生和研究人员理解大型语言模型的工作原理和架构。
  • 代码简洁:基于将实现压缩到大约180行代码,Micro LLAMA让复杂的模型架构变得易于阅读和理解。
  • 环境管理:提供创建和管理Conda环境的指令,用户能轻松地设置和维护所需的开发环境。
  • 易于实验:支持用户在没有高性能计算资源的情况下进行实验和测试。

Micro LLAMA 的技术原理

  • 模型架构:Micro LLAMA实现LLAMA 3模型的基本架构,包括核心组件如自注意力(Self-Attention)机制和前馈神经网络(Feed-Forward Networks, FFNs)。
  • 模块化设计:Micro LLAMA保持模块化设计,各个组件(如嵌入层、编码器层等)能独立理解和修改。
  • 环境配置:基于Conda环境管理,Micro LLAMA提供清晰的指南来设置所需的依赖和运行环境,这有助于用户避免配置相关的问题。
  • 实验与探索:Micro LLAMA提供Jupyter笔记本micro_llama.ipynb,支持用户直接与模型交互,进行实验和探索。

如何运行 Micro LLAMA

要运行Micro LLAMA,首先需要创建一个Conda环境并激活它。以下是具体步骤:

  1. 创建Conda环境

    conda env create --file conda-env.yaml --yes
    
  2. 激活Conda环境

    conda activate micro_llama
    
  3. 运行Jupyter笔记本

    jupyter notebook micro_llama.ipynb
    
  4. 删除Conda环境(如果不再需要):

    conda remove -n micro_llama --all --y
    

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
8月前
|
人工智能 边缘计算 测试技术
MLPerf推理基准测试引入Llama 2 新结果公布
【4月更文挑战第5天】MLCommons发布了最新MLPerf推理基准测试结果,涉及数据中心和边缘计算,引入了大型语言模型Llama 2进行性能评估。Llama 2在OPEN ORCA数据集上的表现提升测试复杂性,提供了更全面的性能数据。MLPerf测试涵盖图像分类、对象检测等边缘计算任务,为开发者和研究人员提供参考。测试结果存在硬件和软件配置影响的局限性,但仍是衡量AI系统性能的重要标准。
156 9
MLPerf推理基准测试引入Llama 2 新结果公布
|
8月前
|
人工智能 自然语言处理 物联网
Predibase发布25个LoRA,超越GPT-4的Mistral模型
【2月更文挑战第24天】Predibase发布25个LoRA,超越GPT-4的Mistral模型
138 2
Predibase发布25个LoRA,超越GPT-4的Mistral模型
|
8月前
|
数据采集 自然语言处理 文字识别
大模型升级与设计之道:ChatGLM、LLAMA、Baichuan及LLM结构解析(下)
大模型升级与设计之道:ChatGLM、LLAMA、Baichuan及LLM结构解析(下)
668 0
|
8月前
|
人工智能 算法 开发工具
Mixtral 8X7B MoE模型在阿里云PAI平台的微调部署实践
Mixtral 8x7B 是Mixtral AI最新发布的大语言模型,是当前最为先进的开源大语言模型之一。阿里云人工智能平台PAI,提供了对于 Mixtral 8x7B 模型的全面支持,开发者和企业用户可以基于 PAI-快速开始轻松完成Mixtral 8x7B 模型的微调和部署。
|
8月前
|
机器学习/深度学习 数据采集 人工智能
大模型升级与设计之道:ChatGLM、LLAMA、Baichuan及LLM结构解析(上)
大模型升级与设计之道:ChatGLM、LLAMA、Baichuan及LLM结构解析(上)
975 0
|
2月前
|
人工智能 自然语言处理 物联网
llama factory 从数据集起步 跑通 qwen系列开源生成式大模型 微调
`dataset_info.json` 文件用于管理 llama factory 中的所有数据集,支持 `alpaca` 和 `sharegpt` 格式。通过配置此文件,可以轻松添加自定义数据集。数据集的相关参数包括数据源地址、数据集格式、样本数量等,支持 Hugging Face 和 ModelScope 两个平台的数据集仓库。针对不同格式的数据集,提供了详细的配置示例,如 `alpaca` 格式的指令监督微调数据集、偏好数据集等,以及 `sharegpt` 格式的多模态数据集等。今天我们通过自定义数据集的方式来进行qwen2.5_14B_instruct模型进行微调
562 7
|
2月前
|
机器学习/深度学习 并行计算 Java
谈谈分布式训练框架DeepSpeed与Megatron
【11月更文挑战第3天】随着深度学习技术的不断发展,大规模模型的训练需求日益增长。为了应对这种需求,分布式训练框架应运而生,其中DeepSpeed和Megatron是两个备受瞩目的框架。本文将深入探讨这两个框架的背景、业务场景、优缺点、主要功能及底层实现逻辑,并提供一个基于Java语言的简单demo例子,帮助读者更好地理解这些技术。
163 2
|
3月前
|
自然语言处理 语音技术 开发者
如何利用 OpenVINO™ 部署 Qwen2 多模态模型
本文将分享如何利用 OpenVINO™ 工具套件在轻薄本上部署 Qwen2-Audio 以及 Qwen2-VL 多模态模型。
|
6月前
|
机器学习/深度学习 自然语言处理 Swift
从头构建和训练 GPT-2 |实战
从头构建和训练 GPT-2 |实战
72 4
|
7月前
|
自然语言处理 监控 并行计算
Qwen2大模型微调入门实战(完整代码)
该教程介绍了如何使用Qwen2,一个由阿里云通义实验室研发的开源大语言模型,进行指令微调以实现文本分类。微调是通过在(指令,输出)数据集上训练来改善LLMs理解人类指令的能力。教程中,使用Qwen2-1.5B-Instruct模型在zh_cls_fudan_news数据集上进行微调,并借助SwanLab进行监控和可视化。环境要求Python 3.8+和英伟达显卡。步骤包括安装所需库、准备数据、加载模型、配置训练可视化工具及运行完整代码。训练完成后,展示了一些示例以验证模型性能。相关资源链接也一并提供。
Qwen2大模型微调入门实战(完整代码)

热门文章

最新文章