LazyGraphRAG:微软推出的图形增强生成增强检索框架

本文涉及的产品
图像搜索,7款服务类型 1个月
简介: LazyGraphRAG是微软研究院推出的图形增强生成增强检索框架,旨在大幅降低数据索引成本并提高查询效率。该框架结合了最佳优先搜索和广度优先搜索,支持本地和全局查询,适用于一次性查询、探索性分析和流数据处理。LazyGraphRAG将加入开源的GraphRAG库,为开发者和企业提供更高效的技术支持。

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

数据索引:大幅降低数据索引成本,仅为GraphRAG的0.1%。
查询性能:在低成本下提供与向量RAG相近的查询性能。
应用场景:适用于一次性查询、探索性分析和流数据处理。

正文(附运行示例)

LazyGraphRAG 是什么

公众号: 蚝油菜花 - graphrag

LazyGraphRAG是微软研究院推出的图形增强生成增强检索(RAG)框架,是GraphRAG的迭代版本。LazyGraphRAG在数据索引成本上大幅降低,是GraphRAG的0.1%,同时用新的混合数据搜索方法,提高生成结果的准确率和效率。

LazyGraphRAG在查询处理上结合最佳优先搜索和广度优先搜索,支持本地和全局查询,适合一次性查询、探索性分析和流数据处理,适合成本敏感的场景。LazyGraphRAG将加入到开源的GraphRAG库中,让更多的开发者和企业能运用这一技术。

LazyGraphRAG 的主要功能

  • 高效的数据索引:降低数据索引的成本,仅为GraphRAG的0.1%,适用大规模数据集的处理。
  • 优化的查询性能:在保持低成本的同时,提供与向量RAG相近的查询性能,特别是在本地查询方面。
  • 全球查询质量:在大幅降低查询成本的同时,保持与GraphRAG相当的全球查询答案质量。
  • 灵活性和可伸缩性:提供统一的查询接口,支持本地和全局查询,适应不同的查询预算和性能需求。
  • 适应一次性查询和流数据处理:适合于一次性查询、探索性分析和流式数据处理。

LazyGraphRAG 的技术原理

  • 名词短语提取:在数据索引阶段,用自然语言处理(NLP)中的名词短语提取技术来识别概念及其共现关系。
  • 图统计优化:基于图统计方法优化概念图,提取出层次化的社区结构,有助于在查询时快速定位相关概念。
  • 混合搜索策略:结合最佳优先搜索和广度优先搜索的策略,基于迭代加深的方式处理查询。
  • 动态查询细化:首先按相似度对文本片段进行排名,然后动态选择相关社区来逐步细化查询结果,找到最佳匹配的文本块。
  • 成本效益分析:LazyGraphRAG在不同的预算水平下展现出成本效益,包含使用低成本的大模型和更高级的大模型,都能保持查询质量。

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

相关文章
|
8月前
|
机器学习/深度学习 vr&ar 决策智能
创新性3D数据合成模型,微软推出EgoGen
【2月更文挑战第6天】创新性3D数据合成模型,微软推出EgoGen
77 2
创新性3D数据合成模型,微软推出EgoGen
|
8月前
|
人工智能 弹性计算 PyTorch
【Hello AI】神行工具包(DeepGPU)-GPU计算服务增强工具集合
神行工具包(DeepGPU)是阿里云专门为GPU云服务器搭配的GPU计算服务增强工具集合,旨在帮助开发者在GPU云服务器上更快速地构建企业级服务能力
129640 3
|
17天前
|
人工智能 自然语言处理 安全
通过阿里云Milvus与PAI搭建高效的检索增强对话系统
阿里云向量检索Milvus版是一款全托管的云服务,兼容开源Milvus并支持无缝迁移。它提供大规模AI向量数据的相似性检索服务,具备易用性、可用性、安全性和低成本等优势,适用于多模态搜索、检索增强生成(RAG)、搜索推荐、内容风险识别等场景。用户可通过PAI平台部署RAG系统,创建和配置Milvus实例,并利用Attu工具进行可视化操作,快速开发和部署应用。使用前需确保Milvus实例和PAI在相同地域,并完成相关配置与开通服务。
|
14天前
|
人工智能 Python
JoyCaption:开源的图像转提示词生成工具,支持多种风格和场景,性能与 GPT4o 相当
JoyCaption 是一款开源的图像提示词生成工具,支持多种生成模式和灵活的提示选项,适用于社交媒体、图像标注、内容创作等场景,帮助用户快速生成高质量图像描述。
86 21
JoyCaption:开源的图像转提示词生成工具,支持多种风格和场景,性能与 GPT4o 相当
|
14天前
|
存储 人工智能 文字识别
VideoRAG:长视频理解的检索增强生成技术,支持多模态信息提取,能与任何 LVLM 兼容
VideoRAG 是一种用于长视频理解的检索增强生成技术,通过提取视频中的视觉对齐辅助文本,帮助大型视频语言模型更好地理解和处理长视频内容。
71 10
VideoRAG:长视频理解的检索增强生成技术,支持多模态信息提取,能与任何 LVLM 兼容
|
17天前
|
人工智能 物联网 Python
VMix:即插即用!字节联合中科大推出增强模型生成美学质量的开源适配器,支持多源输入、高质量视频处理
VMix 是一款创新的即插即用美学适配器,通过解耦文本提示和交叉注意力混合控制,显著提升图像生成的美学质量,支持多源输入和高质量视频处理。
51 11
VMix:即插即用!字节联合中科大推出增强模型生成美学质量的开源适配器,支持多源输入、高质量视频处理
|
20天前
|
人工智能 数据挖掘 API
R2R:开源的 RAG 集成系统,支持多模态处理、混合搜索、知识图谱构建等增强检索技术
R2R 是一款先进的 AI 检索增强生成平台,支持多模态内容处理、混合搜索和知识图谱构建,适用于复杂数据处理和分析的生产环境。
116 3
R2R:开源的 RAG 集成系统,支持多模态处理、混合搜索、知识图谱构建等增强检索技术
|
2月前
|
数据采集 人工智能 自然语言处理
文档智能与检索增强生成结合的LLM知识库方案测评:优势与改进空间
《文档智能 & RAG让AI大模型更懂业务》解决方案通过结合文档智能和检索增强生成(RAG)技术,构建企业级文档知识库。方案详细介绍了文档清洗、向量化、问答召回等步骤,但在向量化算法选择、多模态支持和用户界面上有待改进。部署过程中遇到一些技术问题,建议优化性能和增加实时处理能力。总体而言,方案在金融、法律、医疗等领域具有广泛应用前景。
81 11
|
3月前
|
数据采集 算法 数据可视化
圣牛模型是什么?与传统方法相比有哪些独特的优势和应用限制?
圣牛模型(Sacred Cow Model)是一种创新的项目管理方法,通过系统化思维解决复杂问题。它整合多元数据源,利用先进算法进行深度分析,并通过可视化界面展示结果。相比传统方法,圣牛模型具备更全面的数据分析、高准确性和预测能力、实时动态反馈及个性化定制等优势,但也面临数据质量、技术门槛、解释性和伦理等方面的挑战。结合板栗看板等工具,能进一步提升决策效率和支持效果,助力企业在数字化时代实现持续发展。

热门文章

最新文章