【AI系统】核心计算之矩阵乘

简介: 本文探讨了AI模型中矩阵乘运算的优化实现及其在AI芯片设计中的重要性。文章首先介绍了卷积操作如何转化为矩阵乘,接着阐述了矩阵乘的分块(Tiling)技术以适应芯片内存限制,最后总结了几种常见的矩阵乘优化方法,包括循环优化、分块矩阵乘法、SIMD指令优化等,旨在提高计算效率和性能。

AI 模型中往往包含大量的矩阵乘运算,该算子的计算过程表现为较高的内存搬移和计算密度需求,所以矩阵乘的效率是 AI 芯片设计时性能评估的主要参考依据。本文我们一起来看一下矩阵乘运算在 AI 芯片的具体过程,了解它的执行性能是如何被优化实现的。

从卷积到矩阵乘

AI 模型中的卷积层的实现定义大家应该都已经比较熟悉了,卷积操作的过程大概可以描述为按照约定的窗口大小和步长,在 Feature Map 上进行不断地滑动取数,窗口内的 Feature Map 和卷积核进行逐元素相乘,再把相乘的结果累加求和得到输出 Feature Map 的每个元素结果。卷积到矩阵乘的的转换关系示意如下图。

05Matrix01.png

其中逐元素相乘,再累加的过程就是上文提到的一个计算单位:MACs,矩阵乘的 MACs 数对最终性能具有重要影响。通过将输入数据(Feature Map)和卷积核数据进行重排,卷积操作本质上可以等效理解为矩阵乘操作。

假设卷积的输入和输出的特征图维度用(IH, IW), (OH, OW)表示,卷积核窗口的数据维度用(KH, KW)表示,输入通道是 IC,输出通道是 OC,输入输出特征图和卷积核数据维度重排的转化对应关系如下公式,对输入数据的重排的过程称为 Im2Col,同理把转换后矩阵乘的数据排布方式再换回卷积输入的过程称为 Col2Im。

$$ \begin{align} &input:(IC, IH, IW)\rightarrow(OH*OW, KH*KW*IC)\\ &filter: (OC, KH, KW, IC)\rightarrow(OC, KH*KW*IC)\\ &output:(OC,OH, OW)\rightarrow(OC,OH*OW) \end{align}\\ $$

更具体的,假设卷积核的维度(2, 2),输入特征图维度(3, 3),输入和输出通道都是 1,对一个无 padding,stride=1 的卷积操作,输出特征图是(2, 2),所以输入卷积核转换为矩阵乘排布后的行数是 $2 * 2 = 4 \quad\quad\quad$,列数为 $2 * 2 * 1= 4 \quad\quad\quad\quad$。下图是对应的卷积到矩阵乘的转换示意,输入、输出特征图和卷积核都用不同的颜色表示,图中数字表示位置标记。

05Matrix02.png

比如输入特征图的排布转换过程:第 1 个输出对应输入特征图的窗口数据标记为 1, 2, 4, 5;第 2 个输出对应的输入特征图窗口数据标记为 2, 3, 5, 6;第 3 个输出对应的输入特征图窗口数据标记为 4, 5, 7, 8;第 4 个输出对应的输入特征图窗口数据标记为 5, 6, 8, 9。矩阵乘的维度对应关系如下。

$$ \begin{align} &input: (OH*OW, KH*KW*IC)\rightarrow (4,4)\\ &filter: (OC, KH*KW*IC)\rightarrow(1,4)\\ &output:(OC, OH*OW)\rightarrow(1,4) \end{align} $$

矩阵乘分块 Tilling

上面介绍了卷积到矩阵乘的转换过程,我们可以发现,转换后的矩阵乘的维度非常大,而芯片里的内存空间往往是有限的(成本高),表现为越靠近计算单元,带宽越快,内存越小。为了平衡计算和内存加载的时间,让算力利用率最大化,AI 芯片往往会进行由远到近,多级内存层级的设计方式,达到数据复用和空间换时间的效果。根据这样的设计,矩阵乘实际的数据加载和计算过程将进行分块 Tiling 处理。

假设用 CHW 表示上面转换公式中的 $KH * KW * IC \quad\quad\quad\quad\quad\quad$ 的值,M 表示 OC,N 表示 $OH * OW $,矩阵乘的输入特征图维度是 (CHW, N),矩阵乘的卷积核维度是(M, CHW),输出矩阵维度是(M, N),可以同时在 M,N,CHW 三个维度进行 Tiling,每次计算过程分别加载一小块的特征图和卷积核数据计算,比如在 M,N,CHW 三个维度各分了 2 小块,得到完成的输出特征图需要进行 8 次的数据加载和计算。下图中的 Step1, Step2 展示了两次数据加载可以完成一个输出 Tile 块的计算过程。

05Matrix03.png

矩阵乘的库

矩阵乘作为 AI 模型中的重要性能算子,CPU 和 GPU 的平台上都有专门对其进行优化实现的库函数。比如 CPU 的 OpenBLAS, Intel MKL 等,GPU 的 cuBLAS, cuDNN 等。实现的方法主要有 Loop 循环优化 (Loop Tiling)和多级缓存 (Memory Hierarchy)。

其两者的实现逻辑大概分为如下 2 步,关于 Kernel 实现优化的技术细节在[推理引擎]篇章进一步展开。

  1. Lib 感知相乘矩阵的 Shape
  2. 选择最优的 Kernel 实现来执行

下图展示了对矩阵乘进行 Loop 循环优化和多级缓存结合的实现流程。

05Matrix04.png

左边是共 6 级 Loop 循环展开的伪代码,右边是 Loop 对应多级存储的数据 Tilling 和搬移过程,假设矩阵乘 A,B,C 对应维度是(m, k, n)。

  • Loop5, Loop4, Loop3 对应把矩阵在 n, k, m 维度进行 Tilling 的切分,Tilling 后维度大小分别是 nc, kc, mc。
  • Loop2, Loop1 分别将 Tilling 后的 nc, mc 维度再一次 Tilling,Tilling 后维度大小分别是 nr, mr。
  • Loop0 对 kc 维度进行展开,实现累加求和的过程,得到(mr, nr)大小输出矩阵的部分和。

图中不同的颜色框指代了在不同存储层级上的数据计算,不同颜色块表示该块数据的存储位置。结合不同存储层级的内存空间和数据搬移带宽大小,将不同大小的 A,B 矩阵的 Tilling 块放在不同的存储层级上,可以平衡 AI 芯片执行矩阵乘任务时的时间和空间开销,提升整体算力利用率。比如,对(mr, nr)的计算过程,通过将 B 矩阵的(kc,nr)加载 1 次到 L1 cache 中,每次从 L2 cache 加载 A 矩阵的(mr, kc)大小到计算模块,进行计算,假设 mc 切分了 3 个 mr,则 B 矩阵的(kc, nr)就在 L1 中被重复利用了 3 次。这种用空间换时间或者用时间换空间的策略是进行算子性能优化的主要方向。

矩阵乘的优化

矩阵乘作为计算机科学领域的一个重要基础操作,有许多优化算法可以提高其效率。下面我们对常见的矩阵乘法优化算法做一个整体的归类总结。

  1. 基本的循环优化:通过调整循环顺序、内存布局等手段,减少缓存未命中(cache miss)和数据依赖,提高缓存利用率,从而加速矩阵乘法运算。

  2. 分块矩阵乘法(Blocked Matrix Multiplication):将大矩阵划分成小块,通过对小块矩阵进行乘法运算,降低了算法的时间复杂度,并能够更好地利用缓存。

  3. SIMD 指令优化:利用单指令多数据(SIMD)指令集,如 SSE(Streaming SIMD Extensions)和 AVX(Advanced Vector Extensions),实现并行计算,同时处理多个数据,提高计算效率。

  4. SIMT 多线程并行化:利用多线程技术,将矩阵乘法任务分配给多个线程并行执行,充分利用多核处理器的计算能力。

  5. 算法改进:如 Fast Fourier Transform 算法,Strassen 算法、Coppersmith-Winograd 算法等,通过矩阵分解和重新组合,降低了算法的时间复杂度,提高了计算效率。

这些优化算法通常根据硬件平台、数据规模和计算需求选择不同的策略,以提高矩阵乘法运算的效率。在具体的 AI 芯片或其它专用芯片里面,对矩阵乘的优化实现主要就是减少指令开销,可以表现为两个方面:

  1. 让每个指令执行更多的 MACs 计算。比如 CPU 上的 SIMD/Vector 指令,GPU 上的 SIMT/Tensor 指令,NPU 上 SIMD/Tensor,Vector 指令的设计。

  2. 在不增加内存带宽的前提下,单时钟周期内执行更多的 MACs。比如英伟达的 Tensor Core 中支持低比特计算的设计,对每个 cycle 执行 512bit 数据的带宽前提下,可以执行 64 个 8bit 的 MACs,大于执行 16 个 32bit 的 MACs。

如果您想了解更多AI知识,与AI专业人士交流,请立即访问昇腾社区官方网站https://www.hiascend.com/ 或者深入研读《AI系统:原理与架构》一书,这里汇聚了海量的AI学习资源和实践课程,为您的AI技术成长提供强劲动力。不仅如此,您还有机会投身于全国昇腾AI创新大赛和昇腾AI开发者创享日等盛事,发现AI世界的无限奥秘~

目录
相关文章
|
5天前
|
人工智能 前端开发 小程序
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
2024年12月30日蜻蜓蜻蜓AI工具系统v1.0.0发布-优雅草科技本产品前端源代码已对外开源可免费商用-优雅草老八
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
AigcPanel:开源的 AI 虚拟数字人系统,一键安装开箱即用,支持视频合成、声音合成和声音克隆
AigcPanel 是一款开源的 AI 虚拟数字人系统,支持视频合成、声音克隆等功能,适用于影视制作、虚拟主播、教育培训等多种场景。
32 12
AigcPanel:开源的 AI 虚拟数字人系统,一键安装开箱即用,支持视频合成、声音合成和声音克隆
|
2天前
|
存储 人工智能 开发框架
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
Eliza 是一个开源的多代理模拟框架,支持多平台连接、多模型集成,能够快速构建智能、高效的AI系统。
31 8
Eliza:TypeScript 版开源 AI Agent 开发框架,快速搭建智能、个性的 Agents 系统
|
1天前
|
机器学习/深度学习 人工智能 监控
AI在交通管理系统中的应用
AI在交通管理系统中的应用
30 22
|
3天前
|
存储 人工智能 运维
面向AI的服务器计算软硬件架构实践和创新
阿里云在新一代通用计算服务器设计中,针对处理器核心数迅速增长(2024年超100核)、超多核心带来的业务和硬件挑战、网络IO与CPU性能增速不匹配、服务器物理机型复杂等问题,推出了磐久F系列通用计算服务器。该系列服务器采用单路设计减少爆炸半径,优化散热支持600瓦TDP,并实现CIPU节点比例灵活配比及部件模块化可插拔设计,提升运维效率和客户响应速度。此外,还介绍了面向AI的服务器架构挑战与软硬件结合创新,包括内存墙问题、板级工程能力挑战以及AI Infra 2.0服务器的开放架构特点。最后,探讨了大模型高效推理中的显存优化和量化压缩技术,旨在降低部署成本并提高系统效率。
|
3天前
|
存储 人工智能 芯片
面向AI的服务器计算互连的创新探索
面向AI的服务器计算互连创新探索主要涵盖三个方向:Scale UP互连、AI高性能网卡及CIPU技术。Scale UP互连通过ALink系统实现极致性能,支持大规模模型训练,满足智算集群需求。AI高性能网卡针对大规模GPU通信和存储挑战,自研EIC网卡提供400G带宽和RDMA卸载加速,优化网络传输。CIPU作为云基础设施核心,支持虚拟化、存储与网络资源池化,提升资源利用率和稳定性,未来将扩展至2*800G带宽,全面覆盖阿里云业务需求。这些技术共同推动了AI计算的高效互联与性能突破。
|
9天前
|
机器学习/深度学习 传感器 人工智能
开源AI视频监控系统在监狱安全中的应用——实时情绪与行为分析、暴力预警技术详解
针对监狱环境中囚犯情绪波动和复杂人际互动带来的监控挑战,传统CCTV系统难以有效预警暴力事件。AI视频监控系统基于深度学习与计算机视觉技术,实现对行为、情绪的实时分析,尤其在低光环境下表现优异。该系统通过多设备协同、数据同步及自适应训练,确保高精度识别(95%以上)、快速响应(<5秒),并具备24小时不间断运行能力,极大提升了监狱安全管理的效率与准确性。
|
2天前
|
人工智能 运维 API
PAI企业级能力升级:应用系统构建、高效资源管理、AI治理
PAI平台针对企业用户在AI应用中的复杂需求,提供了全面的企业级能力。涵盖权限管理、资源分配、任务调度与资产管理等模块,确保高效利用AI资源。通过API和SDK支持定制化开发,满足不同企业的特殊需求。典型案例中,某顶尖高校基于PAI构建了融合AI与HPC的科研计算平台,实现了作业、运营及运维三大中心的高效管理,成功服务于校内外多个场景。
|
机器学习/深度学习 人工智能 算法
阿里云异构计算产品家族亮相 覆盖全场景AI和高性能计算需求
本文讲的是阿里云异构计算产品家族亮相 覆盖全场景AI和高性能计算需求【IT168 云计算】计算正推动着人工智能产业更大规模的爆发。
2110 2