如何搭建一个智能对话机器人?

简介: 如何搭建一个智能对话机器人?

2345_image_file_copy_2.jpg
2345_image_file_copy_3.jpg

首先我们来看智能对话机器人体系结构的构成,从与机器交互的完整流程角度来给大家做一个系统性的概述。

当人通过声音信号把自己表达的内容以声音的方式来传递给机器的时候,机器人接收声音的过程涉及到了语音识别技术。

这个语音识别在这个里面其实是一个综合体,它既包括语音采集,也包括把声音信号转成文字信号。

其次,当我们把声音信号转换成文本信号后,要做的一件事情就是语义理解,因为你要让机器理解你,那么首先要让机器知道你说的是什么内容。机器在理解你说内容的过程中,依赖于中文分词、词性标注、实体意图识别、语义分析。那这部分内容就涉及到了语义理解技术。

在机器理解人所说的内容后,会把对应的内容交给对话管理平台来进行处理。那么对话管理平台涉及到的内容是什么呢?包括对话状态的跟踪同时也包括对话的策略模型。

对话状态跟踪负责两件事情,第一是负责对对话状态进行跟踪,第二是对“对话活动”进行决策。当完成了对话状态跟踪和对话活动的决策后,会生成对应的答案。那么这种答案往往很多时候有两种情况,一种情况是多答案的情况,另外一个是对多处理模式的选择。

当我在表达一句话的时候,如果机器在备选答案里面找到了多个回答,即出现了第一种情况,多答案情况。这个时候就会涉及到决策模型,这个决策模型就是智能对话的策略模块。这个时候策略模块包括通用决策模型和领域决策模型。

通用决策模型可以理解为适合所有领域的决策分析模块,领域模型对应特定领域,比如教育、医疗,房产。这一部分是对话管理的组件。

以上是可以在备选答案里面找到答案的情况,那么当机器人在备选答案里找不到答案时,会如何处理呢?

这里涉及到两个问题,第一个是优先级,第二个是补位。

优先级指的是当机器对用户话术进行语义理解之后,如果找到答案的过程存在多种方案,应考虑优先选取的策略是什么。另外一个是当在预置的语料库中找不到答案时,可选的补位的方式是什么。在这里,通常意义上来讲会选择知识图谱,搜索引擎和百科类问答等平台作为补位的一种方式。

在对话管理的过程中,寻找到了对应的内容,接下来要涉及到话术合成问题,这个时候对应的是语音合成,指的是我们需要把对应的内容重新合成为声音信号,反馈给最初发出指令的人。

所以系统性的来讲,整个智能对话机器人的体系结构包括智能语音部分、语义理解、对话管理和辅助语料库这四大部分内容。

智能语音部分
针对智能语音部分,主要包括两部分内容,语音识别以及语音合成。

在这里,语音识别负责的一个职责就是把声音信号翻译成文字。“把声音信号翻译成文字”既是语音识别的定义,同时也是语音识别的职能。语音识别往往会涉及到孤立词识别、连续词语识别、大词表连续语音识别。语音合成往往会涉及到的内容包括语言处理、声学处理、韵律处理以及情感处理。

在语音合成中,我们目前遇到的比较明显的问题是语音合成很难达到真正拟人化的一个水平,机器发出的声音比较机械化,让人听起来很奇怪。机器发出声音较为机械化,主要问题在于对情感、语速、韵律的控制较难。

自然语言处理部分
自然语言处理部分, 涵盖两大块内容,一部分是语义理解,另一部分是语言生成。

语义理解涉及到的内容包括中文分词、序列标注、实体识别、意图识别等内容。正是基于以上内容,我们才可以把人的一句话翻译成机器可以理解的一部分内容。

针对语言生成,这部分面临的主要问题是预定义的模板的建设,包括提前准备好的问答语料库、知识图谱。拿知识图谱来说,它的构建需要非常强大的资本和人力的支撑,才能够构建起一个完整的知识图谱体系。到现在为止还没有一套这样的知识图谱体系。再有是针对问答语料库,也需要很大的人力资源才能做成。

通常意义上,大家都在讲的深度学习,包括seq2seq这种生成模式的模型,它产生的效果其实一直都不怎么理想,所以在解决语言生成方面遇到的问题时,预定义的一对一模板是第一选择,提前构建好语料库是第二选择,基于知识图谱的问答体系是第三选择,基于深度学习的生成模式,是最后一种选择。

以上是智能对话机器人中与自然语言处理相关的组件问题。

对话管理
对话管理包括两部分内容,一是对话状态模型构建过程,另一个是对话策略模型构建过程。

对话状态模型可分为三类:

第一类是对话表示模型,是指上一句话和下一句话之间,以及连续的多句话之间如何通过数学模型进行表达出来;

第二类是对话推理模型,是指基于对话的输入,如何最终生成对话输出的模型;

第三类是对话学习模型,重点在于如何提升对话的能力和水平。

关于对话的策略模型,它涉及到通用对话策略以及特定领域的对话策略,包含以下两部分内容,第一部分内容是用户输入话术及语料库选择的策略;第二部分是当对话产生多个答案时,选择优选答案的策略。这是对话的策略模型。

语料库资源
通常意义上讲,当我们讲智能对话机器人的时候,它所涉及到的语料库资源包括预制模板,针对一个完整的问句,会有完整的与之呼应的答案,这个称为预制模板,这部分应用到客服系统中,比如说查询电话号码。

另外一个就是问答语料,就是聊天式机器人AIML会有预制问题和对应答案。这是问答语料库。

再有一部分是涉及到知识图谱,这个里面涉及到的内容包括用户输入一句话,通过解析里面的实体与实体对象,然后通过推理的模式在知识图谱里面去寻找与之匹配符的内容。

然后第四个语料库资源就在于生成模型,通常意义上来讲seq2seq这种生成方式,当然这个方式依赖于大量的语料库,而语料资源的匮乏会导致训练模型本身存在很大质量问题,效果很差。

在以上四种情况下,如果能够产生问题答案,就会让机器来回答问题。但是,当我们没有办法基于以上四种场景找到具体答案时,我们可以选择使用百科问答以及搜索引擎,这个对应的就是一个补位策略。

以上是智能对话机器人的一个简要体系结构介绍。

既然大模型现在这么火热,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“俗话说站在风口,猪都能飞起来”可以说大模型这对于我们来说就是一个机会,一个可以改变自身的机会,就看我们能不能抓住了。

那么,我们该如何学习大模型?
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线
学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可

相关实践学习
阿里巴巴智能语音交互技术与应用
智能语音交互,是基于语音识别、语音合成、自然语言理解等技术,为企业在多种实际应用场景下,赋予产品“能听、会说、懂你”式的智能人机交互体验。适用于多个应用场景中,包括智能问答、智能质检、法庭庭审实时记录、实时演讲字幕、访谈录音转写等。 本课程主要讲解智能语音相关技术,包括语音识别、人机交互、语音合成等。  
目录
相关文章
|
3月前
|
机器人 TensorFlow 算法框架/工具
智能聊天机器人
【8月更文挑战第1天】智能聊天机器人。
108 2
|
SQL 弹性计算 自然语言处理
AIGC-知识库-LLM:从0开始搭建智能问答钉钉机器人
本文描述在阿里云上从0开始构建个人/企业专属,具备私域知识库+LLM智能问答钉钉机器人。知识库技术方案使用了Lindorm AI数据服务平台知识库能力,LLM使用了开源ChatGLM2-6B。
1098 1
|
机器学习/深度学习 弹性计算 人工智能
【玩转AIGC系列】快速搭建AI对话机器人
本文介绍如何使用阿里云GPU云服务器,基于ChatGLM-6B语言模型快速搭建AI对话机器人。
【玩转AIGC系列】快速搭建AI对话机器人
|
人工智能 机器人
AI智能电销机器人是如何工作的
电销作为每个企业都需要的一种重要拓展方式,几十年以来受到各方面的重视,其优势就是让企业和客户在未见面的前提下就能筛选并建立合作意向,相比外出寻找客户要方便很多。同时,电销在企业中的弊端也极为突出,人工成本高,工作效率低,员工离职率高都是令企业非常头疼的事情。但随着人工智能的发展,现在又有了一种新型电销模式,智能电销,电销机器人自动获客,开发客户的模式更是得到了意想不到的效果。 智能电销机器人相比人工电销来说,所需成本更低,,由于客户回答的态度不一样,其情绪起伏较大,有时还会影响到下一通电话的质量,甚至导致客户的流失。但电话机器人却不会存在这个问题,不管客户如何拒绝,电话机器人依然可以用饱满的
|
人工智能 机器人 UED
ai智能语音机器人系统都有什么功能?
第一、 智能AI电销机器人的并发量是多少啊?别人可以同时呼出几个? 通常情况下,智能AI电销机器人可以根据客户的需要选择客户需要的外呼并发量,最大可以实现一条宽带,一个主机,可以同时保持客户使用的灵活性,即能兼顾效率,也能兼顾成本控制。 第二、可以转人工?对话时可以打断机器人吗? 转人工和中途打断都是可以的,这些都是电话机器人的基本功能,个人不建议您用转人工的功能,因为每次转人工,机器人都要等到这通转接人工通话结束后才会进行下一通的呼出,这就大大降低了机器人的拨打效率了。所以留给后续人工跟进是最合理的。打断功能是客户说任何内容都能打断的,为了保证一个良好的用户体验度,一些无意义的语气
|
人工智能 机器人
AI智能电销机器人源码可二开
知识库要不断地完善,在每次通话结束后,需查看通话记录,听一下用户的通话录音,找出机器人与客户对话过程中的不足之处,然后健全知识库或者优化话术流程。 另外,在每次通话过程,机器人会记录用户的通话状态、关键词命中次数以及最终话术的节点,通过以上数据,对客户意向进行标注,让人工客服对有意向的客户进行跟踪回访,完成整个营销过程。有关系统问题欢迎和博主技术交流​。
|
机器人
《阿里云产品手册2022-2023 版》——智能对话机器人
《阿里云产品手册2022-2023 版》——智能对话机器人
174 0
|
自然语言处理 监控 机器人
智能语音机器人系统介绍
智能语音机器人系统的总体架构分为三层:分别包括服务管理层、智能业务层以及基础任务执行层。其中智能业务层是整个系统的核心部分 下面分别对各层主要模块功能进行介绍: 服务管理层 服务管理层在智能语音机器人系统上为企业提供丰富的增值服务,包括业务开发管理服务、服务监控服务。业务开发管理服务为业务人员提供业务编辑的管理界面,方便其对业务流程进行编辑,如业务人员可以通过话术编辑和组件拖拽的方式构建电话呼叫对话流程图。服务监控服务则主要针对语义解析引擎当前配置信息的管理与设置,实时对系统的运行数据进行统计分析。 智能业务层 智能业务层是智能语音机器人系统的核心层,是系统具备机器智能呼叫/接听
|
人工智能 机器人
AI智能外呼机器人工作流程
AI外呼机器人是集合了自动拨打电话、多轮语音交互、客户意向智能分级、外呼任务自定义等多功能于一体智能语音对话机器人。 一个完整的智能外呼流程(不涉及转人工)包含了四个环节,各环节会由外呼系统整体串联起来进行运作: 1.用户接听:外呼工作流程的开始,外呼系统需识别用户接听信号。 2.客户机器人响应:这一环节关键在策略输出,外呼系统需根据用户应答,识别用户意图或动作,根据机器人预设任务流和策略给出响应话术。 3.用户应答/动作:这一模块主要在外呼系统需对用户的意图和动作进行精准识别,做用户状态记录,以便一下步策略的实施。 4.用户/客服机器人挂机:当机器人走完任务流会主动挂断,或用户提前
|
存储 人工智能 搜索推荐
AI语音机器人的基本业务流程
先画个图,了解下AI语音机器人的基本业务流程。 上图是一个AI语音机器人的业务流程,简单来说就是首先要配置话术,就是告诉机器人在遇到问题该怎么回答,这个不同公司不同行业的差别比较大,所以一般每个客户都会配置其个性化的话术。 话术配置完成后,需要给账号配置线路,目的就是能够顺利的把电话打出去。 线路配完后,就是建立任务了,说白了就是导入电话号码,因为资源有限,不可能导入一批立即打完,所以需要以任务的形式分配给机器人,然后机器人逐个完成。值得一提的是,如果有多条线路,创建任务时建议提供线路选择功能,很多公司的业务不止一个城市,而大家又是比较习惯接听