工作中常见的软件系统部署架构

简介: 在实际应用中,会根据项目的具体需求、规模、性能要求等因素选择合适的部署架构,或者综合使用多种架构模式来构建稳定、高效、可扩展的系统。

1. 单体架构部署

架构特点

所有功能模块打包成一个独立的应用程序,包括前端界面、后端服务以及数据库访问层等。

简单直接,易于开发、测试和部署,适合小型项目或快速迭代的初期阶段。

部署方式

将打包好的单体应用部署在一台服务器上,如常见的Web服务器(Tomcat、Jetty等)。

应用启动后,通过服务器的端口监听来自客户端的请求,并处理相应的业务逻辑。

优缺点

优点:架构简单,开发和部署成本低;易于进行项目初期的快速开发和迭代;便于调试和维护,所有代码在一个项目中。

缺点:随着项目规模扩大,代码复杂度增加,维护困难;系统扩展性较差,难以针对某个模块进行单独扩展;性能瓶颈明显,所有请求都在同一进程中处理。

2. 微服务架构部署(基于Spring Cloud)

架构特点

将系统拆分为多个小型、独立的微服务,每个微服务专注于完成特定的业务功能。

服务之间通过轻量级的通信机制(如RESTful API)进行交互,实现松耦合。

引入服务注册与发现、熔断机制、负载均衡等组件,提高系统的可靠性和可扩展性。

部署方式

每个微服务可以独立部署在不同的服务器或容器中(如Docker容器)。

使用服务注册中心(如Eureka、Consul等)管理微服务的实例信息,实现服务的自动注册与发现。

通过配置中心(如Spring Cloud Config)统一管理微服务的配置信息,便于配置的动态更新。

采用API网关(如Zuul、Gateway等)对外部请求进行统一入口管理和路由转发,实现安全控制、限流等功能。

优缺点

优点:高度的灵活性和可扩展性,每个微服务可以独立开发、部署和升级;技术选型灵活,不同微服务可以根据需求使用不同的技术栈;更好的性能和可维护性,故障隔离性强,一个微服务故障不会影响整个系统。

缺点:架构复杂,开发和运维成本较高;服务之间的分布式通信增加了系统的复杂性和性能开销;数据一致性管理难度较大,需要处理分布式事务等问题。

3. 前后端分离部署

架构特点

前端项目和后端项目完全分离,通过接口进行数据交互。

前端专注于用户界面展示和交互体验,采用HTML、CSS、JavaScript等技术,常使用前端框架(如Vue.js、React等)。

后端负责业务逻辑处理、数据存储和接口提供,基于Java等后端语言和相关框架开发。

部署方式

前端项目打包后部署在Web服务器(如Nginx)上,通过配置反向代理将前端请求转发到后端接口。

后端项目部署在应用服务器(如Tomcat)上,对外提供RESTful API接口供前端调用。

优缺点

优点:前后端团队可以并行开发,提高开发效率;职责分离清晰,便于维护和扩展;提升用户体验,前端可以独立优化性能和交互。

缺点:增加了开发和部署的复杂性,需要协调前后端的联调;跨域问题需要处理,确保前后端通信正常。

4. 容器化部署(结合Docker和Kubernetes)

架构特点

将应用及其依赖打包成容器镜像,实现环境一致性和可移植性。

使用容器编排工具(如Kubernetes)对容器进行自动化部署、扩展、管理和监控。

便于在不同环境(开发、测试、生产等)中快速部署和迁移应用。

部署方式

首先,将若依系统的各个组件(前端、后端微服务等)分别构建成Docker镜像,并推送到镜像仓库。

在Kubernetes集群中,编写部署配置文件(如Deployment、Service等)来描述应用的部署需求,包括副本数量、资源限制、端口映射等。

通过Kubernetes命令或管理界面将应用部署到集群中,Kubernetes会根据配置自动创建和管理容器实例,实现负载均衡、滚动更新、故障恢复等功能。

优缺点

优点:环境一致性保证了应用在不同环境中的运行稳定性;快速部署和扩展,能够根据业务需求自动调整容器数量;提高资源利用率,实现容器级别的资源隔离和分配。

缺点:引入了容器编排工具的复杂性,需要学习和掌握相关技术;对基础设施要求较高,需要搭建和维护Kubernetes集群。

5. 分布式数据库部署

架构特点

若依系统的数据存储采用分布式数据库(如MySQL Cluster、TiDB等),以应对大规模数据存储和高并发访问的需求。

分布式数据库通过数据分片、复制等技术,将数据分布在多个节点上,实现数据的水平扩展和高可用性。

部署方式

部署分布式数据库集群,配置数据分片规则和节点之间的通信机制。

若依系统的后端应用连接到分布式数据库集群,通过配置数据源等方式实现数据的读写操作。

优缺点

优点:能够处理海量数据,支持高并发读写操作;提供高可用性和数据冗余备份,部分节点故障不影响系统整体运行。

缺点:架构复杂,数据库管理和运维难度较大;数据一致性保证相对复杂,需要处理分布式事务和数据同步问题。

在实际应用中,会根据项目的具体需求、规模、性能要求等因素选择合适的部署架构,或者综合使用多种架构模式来构建稳定、高效、可扩展的系统。

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
相关文章
|
8天前
|
监控 安全 API
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
本文详细介绍了PaliGemma2模型的微调流程及其在目标检测任务中的应用。PaliGemma2通过整合SigLIP-So400m视觉编码器与Gemma 2系列语言模型,实现了多模态数据的高效处理。文章涵盖了开发环境构建、数据集预处理、模型初始化与配置、数据加载系统实现、模型微调、推理与评估系统以及性能分析与优化策略等内容。特别强调了计算资源优化、训练过程监控和自动化优化流程的重要性,为机器学习工程师和研究人员提供了系统化的技术方案。
128 77
使用PaliGemma2构建多模态目标检测系统:从架构设计到性能优化的技术实践指南
|
2天前
|
机器学习/深度学习 算法 数据可视化
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
本文探讨了在量化交易中结合时序特征和静态特征的混合建模方法。通过整合堆叠稀疏降噪自编码器(SSDA)和基于LSTM的自编码器(LSTM-AE),构建了一个能够全面捕捉市场动态特性的交易系统。SSDA通过降噪技术提取股票数据的鲁棒表示,LSTM-AE则专注于捕捉市场的时序依赖关系。系统采用A2C算法进行强化学习,通过多维度的奖励计算机制,实现了在可接受的风险水平下最大化收益的目标。实验结果显示,该系统在不同波动特征的股票上表现出差异化的适应能力,特别是在存在明确市场趋势的情况下,决策准确性较高。
16 5
基于深度混合架构的智能量化交易系统研究: 融合SSDA与LSTM自编码器的特征提取与决策优化方法
|
13天前
|
机器学习/深度学习 人工智能 并行计算
【AI系统】Kernel 层架构
推理引擎的Kernel层负责执行底层数学运算,如矩阵乘法、卷积等,直接影响推理速度与效率。它与Runtime层紧密配合,通过算法优化、内存布局调整、汇编优化及调度优化等手段,实现高性能计算。Kernel层针对不同硬件(如CPU、GPU)进行特定优化,支持NEON、AVX、CUDA等技术,确保在多种平台上高效运行。
65 32
|
13天前
|
存储 机器学习/深度学习 人工智能
【AI系统】计算图优化架构
本文介绍了推理引擎转换中的图优化模块,涵盖算子融合、布局转换、算子替换及内存优化等技术,旨在提升模型推理效率。计算图优化技术通过减少计算冗余、提高计算效率和减少内存占用,显著改善模型在资源受限设备上的运行表现。文中详细探讨了离线优化模块面临的挑战及解决方案,包括结构冗余、精度冗余、算法冗余和读写冗余的处理方法。此外,文章还介绍了ONNX Runtime的图优化机制及其在实际应用中的实现,展示了如何通过图优化提高模型推理性能的具体示例。
45 4
【AI系统】计算图优化架构
|
3天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
22 3
|
16天前
|
存储 人工智能 监控
【AI系统】推理系统架构
本文深入探讨了AI推理系统架构,特别是以NVIDIA Triton Inference Server为核心,涵盖推理、部署、服务化三大环节。Triton通过高性能、可扩展、多框架支持等特点,提供了一站式的模型服务解决方案。文章还介绍了模型预编排、推理引擎、返回与监控等功能,以及自定义Backend开发和模型生命周期管理的最佳实践,如金丝雀发布和回滚策略,旨在帮助构建高效、可靠的AI应用。
76 15
存储 人工智能 自然语言处理
48 6
|
1天前
|
监控 Java 数据中心
微服务架构系统稳定性的神器-Hystrix
Hystrix是由Netflix开源的库,主要用于微服务架构中的熔断器模式,防止服务调用失败引发级联故障。它通过监控服务调用的成功和失败率,在失败率达到阈值时触发熔断,阻止后续调用,保护系统稳定。Hystrix具备熔断器、资源隔离、降级机制和实时监控等功能,提升系统的容错性和稳定性。然而,Hystrix也存在性能开销、配置复杂等局限,并已于2018年进入维护模式。
10 0
|
1天前
|
前端开发 搜索推荐 安全
陪玩系统架构设计陪玩系统前后端开发,陪玩前端设计是如何让人眼前一亮的?
陪玩系统的架构设计、前后端开发及前端设计是构建吸引用户、功能完善的平台关键。架构需考虑用户需求、技术选型、安全性等,确保稳定性和扩展性。前端可选用React、Vue或Uniapp,后端用Spring Boot或Django,数据库结合MySQL和MongoDB。功能涵盖用户管理、陪玩者管理、订单处理、智能匹配与通讯。安全性方面采用SSL加密和定期漏洞扫描。前端设计注重美观、易用及个性化推荐,提升用户体验和平台粘性。
11 0
|
15天前
|
机器学习/深度学习 人工智能 调度
【AI系统】推理引擎架构
本文详细介绍了推理引擎的基本概念、特点、技术挑战及架构设计。推理引擎作为 AI 系统中的关键组件,负责将训练好的模型部署到实际应用中,实现智能决策和自动化处理。文章首先概述了推理引擎的四大特点:轻量、通用、易用和高效,接着探讨了其面临的三大技术挑战:需求复杂性与程序大小的权衡、算力需求与资源碎片化的矛盾、执行效率与模型精度的双重要求。随后,文章深入分析了推理引擎的整体架构,包括优化阶段的模型转换工具、模型压缩、端侧学习等关键技术,以及运行阶段的调度层、执行层等核心组件。最后,通过具体的开发流程示例,展示了如何使用推理引擎进行模型的加载、配置、数据预处理、推理执行及结果后处理。
43 0
下一篇
DataWorks