在机器人学习领域,训练一个能够适应多种任务和环境的通用模型一直是一个挑战。传统方法通常需要为每个特定的机器人、任务和环境收集数据,这不仅昂贵而且容易过拟合。然而,最近一项名为“Scaling Proprioceptive-Visual Learning with Heterogeneous Pre-trained Transformers”的研究提出了一种新颖的方法,该方法利用异构预训练Transformer(HPT)来学习跨不同本体和任务的共享表示,从而实现了显著的性能提升。
机器人学习的难点在于数据的异构性,包括不同的机器人硬件、环境和任务。这种异构性使得传统方法难以泛化到新的场景中。然而,机器学习领域的历史经验表明,在大规模、高质量和多样化的数据上进行预训练可以带来更一般的模型,这些模型通常比特定任务的模型表现更好。
为了解决机器人学习中的异构性问题,该研究提出了HPT方法。HPT是一种通用的架构,它通过在大量不同本体和任务的数据上进行预训练,学习一个与任务和本体无关的共享表示。该架构将来自不同本体的特定本体感觉和视觉输入对齐到一个短序列的标记中,然后处理这些标记以映射到不同任务的机器人控制。
HPT的关键思想是利用异构预训练来对齐来自不同本体的本体感觉和视觉信息,从而创建一个共享的“语言”或策略。通过这种共享表示,新的本体只需要少量的数据和训练来“翻译”其特定的设置到共享的“语言”中。
该研究在多个模拟器基准和真实世界设置中进行了实验,并比较了HPT与其他基线的性能。实验结果表明,HPT在未见过的任务上表现显著优于其他方法,性能提升超过20%。
在模拟器实验中,HPT在Meta-world、RoboMimic和Fleet-Tools等多个机器人操作模拟器基准上进行了评估。实验结果表明,HPT在所有这些基准上都表现出了显著的性能提升。
在真实世界实验中,HPT在宠物护理和装配等任务上进行了评估。实验结果表明,HPT在真实世界环境中也表现出了良好的泛化性能,能够执行动态、长时域的接触丰富任务。
HPT方法的提出为机器人学习领域带来了新的思路和方法。通过利用异构预训练来学习共享表示,HPT能够适应不同的本体和任务,并在未见过的任务上表现出显著的性能提升。
然而,HPT方法也存在一些局限性。首先,HPT的预训练需要大量的数据和计算资源,这可能限制了其在资源受限环境中的应用。其次,HPT的泛化性能仍然受到限制,特别是在处理非常不同的本体和任务时。