SciPy 教程 之 SciPy 稀疏矩阵 2
SciPy 稀疏矩阵
稀疏矩阵(英语:sparse matrix)指的是在数值分析中绝大多数数值为零的矩阵。反之,如果大部分元素都非零,则这个矩阵是稠密的(Dense)。
在科学与工程领域中求解线性模型时经常出现大型的稀疏矩阵。
SciPy 的 scipy.sparse 模块提供了处理稀疏矩阵的函数。
我们主要使用以下两种类型的稀疏矩阵:
CSC - 压缩稀疏列(Compressed Sparse Column),按列压缩。
CSR - 压缩稀疏行(Compressed Sparse Row),按行压缩。
CSR 矩阵方法
我们可以使用 data 属性查看存储的数据(不含 0 元素):
实例
import numpy as np
from scipy.sparse import csr_matrix
arr = np.array([[0, 0, 0], [0, 0, 1], [1, 0, 2]])
print(csr_matrix(arr).data)
以上代码输出结果为:
[1 1 2]
使用 count_nonzero() 方法计算非 0 元素的总数:
实例
import numpy as np
from scipy.sparse import csr_matrix
arr = np.array([[0, 0, 0], [0, 0, 1], [1, 0, 2]])
print(csr_matrix(arr).count_nonzero())
以上代码输出结果为:
3