一份运维监控的终极秘籍!监控不到位,宕机两行泪

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
可观测监控 Prometheus 版,每月50GB免费额度
简介: 【10月更文挑战第25天】监控指标的采集分为基础监控和业务监控。基础监控涉及CPU、内存、磁盘等硬件和网络信息,而业务监控则关注服务运行状态。常见的监控数据采集方法包括日志、JMX、REST、OpenMetrics等。Google SRE提出的四个黄金指标——错误、延迟、流量和饱和度,为监控提供了重要指导。错误监控关注系统和业务错误;延迟监控关注服务响应时间;流量监控关注系统和服务的访问量;饱和度监控关注服务利用率。这些指标有助于及时发现和定位故障。

黑盒与白盒监控

监控指标的采集

配置监控时,我们首要面对的是监控数据如果采集的问题。一般我们可以把 监控指标分为两类:基础监控和业务监控。

基础监控image.png

包括 CPU、内存、磁盘、端口和进程等服务器机器、网络的操作系统级别的信息。通常情况下,成熟的监控系统(例如开源的 Prometheus、Zabbix 等)均会提供基础监控项的采集能力,这里不做过多介绍。但需要注意的一点,机器级别的基础监控指标一般并不能代表服务的真实运行状况,例如单台实例的故障对一个设计合理的分布式系统来说并不会带来严重后果。所以 只有结合业务相关监控指标,基础监控指标才有意义。

业务监控

业务监控指标由业务系统内部的服务产生,一般能够真实反应业务运行状态。设计合理的系统一般都会提供相关监控指标供监控系统采集。监控数据的采集方法一般可以分为以下几大类。

日志:日志可以包含服务运行的方方面面,是重要的监控数据来源。例如,通过 Nginx access 日志可以统计出错误(5xx)、延迟(响应时间)和流量,结合已知的容量上限就可以计算出饱和度。一般除监控系统提供的日志采集插件外,如 Rsyslog、Logstash、Filebeat、Flume 等都是比较优秀的日志采集软件。

JMX:多数 Java 开发的服务均可由 JMX 接口输出监控指标。不少监控系统也有集成 JMX 采集插件,除此之外我们也可通过 jmxtrans、jmxcmd 工具进行采集。

REST:提供 REST API 来进行监控数据的采集,如 Hadoop、ElasticSearch。

OpenMetrics:得益于 Prometheus 的流行,作为 Prometheus 的监控数据采集方案,OpenMetrics 可能很快会成为未来监控的业界标准。目前绝大部分热门开源服务均有官方或非官方的 exporter 可供使用。

命令行:一些服务提供本地的命令来输出监控指标。

主动上报:对于采用 PUSH 模型的监控系统来说,服务可以采取主动上报的方式把监控指标 push 到监控系统,如 Java 服务可使用 Metrics 接口自定义 sink 输出。另外,运维也可以使用自定义的监控插件来完成监控的采集。

埋点:埋点是侵入式的监控数据采集方式,其优点是其可以更灵活地为我们提供业务内部的监控指标,当然缺点也很明显:需要在代码层面动手脚(常常需要研发支持,成本较高)。

其它方式:以上未涵盖的监控指标采集方式,例如 Zookeeper 的四字命令,MySQL 的 show status 命令。

以上列出了几种常见的监控指标采集方法,在实际工作,如果没有现成的监控采集插件,则需要我们自行开发采集脚本。

监控的四个黄金指标

无论业务系统如何复杂,监控指标如何眼花缭乱,但万变不离其宗,监控的目的无非是为了解服务运行状况、发现服务故障和帮助定位故障原因。为了达成这个目的,Google SRE 总结的监控四个黄金指标对我们添加监控具有非常重要的指导意义。下图给出四个黄金指标所包含的主要监控指标,下面我们就这四个黄金指标分别展开说明,并给出一些监控项的采集实例。

image.png

四个黄金指标

错误:错误是指当前系统发生的错误请求和错误率

错误是需要在添加监控时首要关注的指标。

在添加错误相关监控时,我们应该关注以下几个方面:

基础监控:宕机、磁盘(坏盘或文件系统错误)、进程或端口挂掉、网络丢包等故障。

业务监控:

核心功能处理错误,每种系统都有特定的核心功能,比如 HDFS 的文件块读写、Zookeeper 对 Key 的读写和修改操作。

基础功能单元丢失或异常,这里的基础功能单元是指一个系统功能上的基本单位,例如 HDFS 的 Block、Kafka 的 Message,这种基础数据的丢失一般都会对业务功能造成直接的影响。

Master 故障,对于中心化的分布式系统来说,Master 的健康状况都是重中之重。例如 HDFS 的 NameNode、Zookeeper 的 Leader,ElasticSearch 的 MasterNode。

可用节点数,对于分布式系统来说,可用节点数也是非常重要的,比如 Zookeeper、ETCD 等系统需要满足可用节点数大于不可用节点数才能保证功能的正常。

注意:除白盒监控外,主要功能或接口、以及内部存在明显边界的功能模块和上游依赖模块,都应该添加黑盒端到端监控。

延迟:服务请求所需时间

服务延迟的上升不仅仅体现在用户体验的下降,也有可能会导致请求堆积并最终演变为整个业务系统的雪崩。

以下为延迟指标的主要关注点:

基础监控:IO 等待、网络延迟;

业务监控:业务相关指标主要需要关注核心功能的响应时长。比如 Zookeeper 的延迟指标 zk_avg_latency,ElasticSearch 的索引、搜索延迟和慢查询。

注意:与错误指标类似,白盒延迟指标通常仅能代表系统内部延迟,建议为主要功能或接口添加黑盒监控来采集端到端的延迟指标。

流量:当前系统的流量

流量指标可以指系统层面的网络和磁盘 IO,服务层面的 QpS、PV 和 UV 等数据。流量和突增或突减都可能预示着系统可能出现问题(攻击事件、系统故障…)。一下为流量主要关注的方面:

基础监控:磁盘和网卡 IO;

业务监控:核心功能流量,例如通过 QpS/PV/UV 等通常能够代表 Web 服务的流量,而 ElasticSearch 的流量可用索引创建速率、搜索速率表示。

饱和度:用于衡量当前服务的利用率

更为通俗的讲,饱和度可以理解为服务的利用率,可以代表系统承受的压力。所以饱和度与流量息息相关,流量的上升一般也会导致饱和度的上升。通常情况下,每种业务系统都应该有各自的饱和度指标。

在很多业务系统中,消息队列长度是一个比较重要的饱和度指标,除此之外 CPU、内存、磁盘、网络等系统资源利用率也可以作为饱和度的一种体现方式。

基础监控:CPU、内存、磁盘和网络利用率、内存堆栈利用率、文件句柄数、TCP 连接数等;

业务监控:

基础功能单元使用率,大多数系统对其基础的功能单元都有其处理能力的上限,接近或达到该上限时可能会导致服务的错误、延迟增大。例如 HDFS 的 Block 数量上升会导致 NameNode 堆内存使用率上升,Kafka 的 Topics 和 Partitions 的数量、Zookeeper 的 node 数的上升都会对系统产生压力。

消息队列长度,不少系统采用消息队列存放待处理数据,所以消息队列长度在一定程度上可以代表系统的繁忙程度。如 ElasticSearch、HDFS 等都有队列长度相关指标可供采集。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
2月前
|
运维 监控 安全
构建高效运维体系:从监控到自动化的全方位实践
本文深入探讨了构建高效运维体系的关键要素,从监控、日志管理、自动化工具、容器化与微服务架构、持续集成与持续部署(CI/CD)、虚拟化与云计算以及安全与合规等方面进行了全面阐述。通过引入先进的技术和方法,结合实际案例和项目经验,为读者提供了一套完整的运维解决方案,旨在帮助企业提升运维效率,降低运营成本,确保业务稳定运行。
|
18天前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第26天】Prometheus与Grafana是智能运维中的强大组合,前者是开源的系统监控和警报工具,后者是数据可视化平台。Prometheus具备时间序列数据库、多维数据模型、PromQL查询语言等特性,而Grafana支持多数据源、丰富的可视化选项和告警功能。两者结合可实现实时监控、灵活告警和高度定制化的仪表板,广泛应用于服务器、应用和数据库的监控。
99 3
|
3月前
|
运维 Prometheus 监控
OceanBase 的运维与监控最佳实践
【8月更文第31天】随着分布式数据库解决方案的需求日益增长,OceanBase 作为一种高性能的分布式数据库系统,在众多场景下得到了广泛应用。为了确保 OceanBase 集群的稳定运行,合理的运维与监控是必不可少的。本文将探讨 OceanBase 的日常运维管理与监控策略,并提供相应的代码示例。
192 2
|
30天前
|
运维 Prometheus 监控
运维之眼:监控的艺术与实践
在信息技术飞速发展的今天,运维监控已成为保障系统稳定运行的关键。本文将探讨运维监控的重要性,介绍常用的监控工具和方法,并通过实际案例分析,展示如何有效地实施监控策略,以确保系统的高可用性和性能。
|
1月前
|
运维 监控 测试技术
构建高效运维体系:从监控到自动化的实践之路
【10月更文挑战第9天】 在当今信息技术飞速发展的时代,运维作为保障系统稳定性与效率的关键角色,正面临前所未有的挑战。本文将探讨如何通过构建一个高效的运维体系来应对这些挑战,包括监控系统的搭建、自动化工具的应用以及故障应急处理机制的制定。我们将结合具体案例,分析这些措施如何帮助提升系统的可靠性和运维团队的工作效率。
51 1
|
1月前
|
运维 监控 安全
构建高效运维体系:从监控到自动化的全面指南在当今数字化时代,运维作为保障系统稳定性和效率的重要环节,其重要性不言而喻。本文将深入探讨如何构建一个高效的运维体系,从监控系统的搭建到自动化运维的实施,旨在为读者提供一套完整的解决方案。
本文详细介绍了高效运维体系的构建过程,包括监控系统的选择与部署、日志分析的方法、性能优化的策略以及自动化运维工具的应用。通过对这些关键环节的深入剖析,帮助运维人员提升系统的可靠性和响应速度,降低人工干预成本,实现业务的快速发展和稳定运行。
|
17天前
|
Prometheus 运维 监控
智能运维实战:Prometheus与Grafana的监控与告警体系
【10月更文挑战第27天】在智能运维中,Prometheus和Grafana的组合已成为监控和告警体系的事实标准。Prometheus负责数据收集和存储,支持灵活的查询语言PromQL;Grafana提供数据的可视化展示和告警功能。本文介绍如何配置Prometheus监控目标、Grafana数据源及告警规则,帮助运维团队实时监控系统状态,确保稳定性和可靠性。
83 0
|
2月前
|
存储 弹性计算 运维
自动化监控和响应ECS系统事件
阿里云提供的ECS系统事件用于记录云资源信息,如实例启停、到期通知等。为实现自动化运维,如故障处理与动态调度,可使用云助手插件`ecs-tool-event`。该插件定时获取并转化ECS事件为日志存储,便于监控与响应,无需额外开发,适用于大规模集群管理。详情及示例可见链接文档。
|
2月前
|
存储 运维 监控
构建高效运维体系:从监控到自动化的全方位实践指南
在当今数字化时代,企业对运维(Operations)的需求日益增长。运维不仅仅是保持系统运行那么简单,它涉及到监控、日志管理、故障排除、性能优化和自动化等多个层面。本文将从实际操作的角度出发,详细探讨如何构建一个高效的运维体系。通过具体案例,我们将了解不同运维工具和方法的应用,以及它们是如何帮助企业提高生产效率和降低运营风险的。无论你是刚接触运维的新手,还是经验丰富的专家,这篇文章都将为你提供宝贵的参考和启示。
|
2月前
|
弹性计算 JSON 运维
阿里云ECS实例运维属性-如何控制实例的宕机表现
介绍如何通过运维属性指定阿里云ECS的宕机运维表现等