基于百炼平台构建智能体应用——十分钟构造能主动提问的导购智能体

本文涉及的产品
通义法睿合同智能审查,1个月8份合同免费体验
简介: 本文介绍了如何使用阿里云百炼大模型服务平台构建一个多智能体的智能导购应用,并将其部署到钉钉。通过百炼的Assistant API,您可以快速构建一个包含规划助理、手机导购、冰箱导购和电视导购的智能导购系统。文章详细讲解了从创建函数计算应用、访问网站、验证智能导购效果到将商品检索应用集成到智能导购中的全过程,帮助您快速实现智能导购功能。

前言

大模型服务平台百炼提供了完善的智能体应用构建功能,包括智能体应用,工作流应用,智能体编排应用等多种应用构建模式,支持在百炼控制台低代码或0代码的方式创建应用,也支持API调用。可以基于业务需求和数据,快速在百炼平台构建一个专属应用,同时部署到不同的终端。本文通过一个简单的RAG应用,介绍如何将百炼应用部署到钉钉的流程。本章将以百炼Multi-Agent架构为核心,展示如何快速部署一个多智能体的导购助手体系。

本节目标

学完本节课程后,你将能够:

→ 了解如何通过百炼的Assistant API 构建一个 Multi-Agent 架构的大模型应用实现智能导购

1、方案概览

当您去电器商城购买冰箱,您首先向前台发起询问哪里可以买到冰箱,前台将您带到了冰箱商店的位置;在冰箱商店,导购员向您询问想要什么参数的冰箱,并根据这些参数将合适的冰箱推荐给您。

类似的,您可以通过百炼的Assistant API 构建一个 Multi-Agent 架构的大模型应用实现智能导购,其中:

  • 规划助理(Router Agent)是该应用的核心,它会参考对话历史与用户的输入,选择合适的助理进行回复。
  • 手机导购、冰箱导购与电视导购接收规划助理的指派信息,主动向顾客询问商品参数偏好;在参数收集完成后,系统可以通过百炼应用进行智能商品检索,也可以使用SQL查询商品数据库,然后输出推荐的商品。
  • 用户与各助理的对话历史可以为每个助理的决策提供参考依据。

img

2、搭建智能导购网站

您可以通过我们提前准备好的函数计算应用模板,快速搭建并测试一个集成了智能导购的网站。详细步骤如下:

2.1 创建函数计算应用

您可以访问我们准备好的函数计算应用模板,快速搭建一个集成智能导购的网站。智能导购可以通过多轮交互,收集顾客心仪的商品信息,默认商品包含手机、电视与冰箱。参考下图选择直接部署并填写您的 API Key,您可以访问我的API-KEY来获取您的API Key。其它表单项保持默认,单击页面左下角的创建并部署默认环境,等待项目部署完成即可(预计耗时 1 分钟)。

温馨提示:

百炼应用ID(可选): 如果您计划使用百炼应用进行商品智能检索,请在创建应用时提供百炼应用ID,获取方式请参考创建百炼商品检索应用并集成到智能导购中(可选)。 如果您计划使用商品数据库检索,此项可留空。 如果您决定后期集成百炼应用,可在创建函数计算应用后,通过环境变量配置方式添加您的百炼应用ID。

img

2.2 访问网站

在函数计算应用部署完成后,您可以在跳转后的页面的环境信息中找到示例网站的访问域名,单击即可查看,确认示例网站已经部署成功。

img

2.3 验证智能导购效果

智能导购会主动询问并收集需要的商品参数信息;收集完成后打印出参数信息。

img

温馨提示:在导购收集到顾客的商品参数偏好后,您可以通过查询商品数据库来返回商品。如果您想通过百炼应用来进行智能商品检索,请参考创建百炼商品检索应用并集成到智能导购中(可选)

3、关键代码

上述示例程序中用于意图识别的模块是规划助理(Router Agent)。经过规划助理的意图分类后,用户的问题会被传递给对应的手机导购 Agent、电视导购 Agent 或冰箱导购 Agent。

3.1 规划助理

ROUTER_AGENT_INSTRUCTION = """你是一个问题分类器
请根结合用户的提问和上下文判断用户是希望了解的商品具体类型。

注意,你的输出结果只能是下面列表中的某一个,不能包含任何其他信息:
- 手机(用户在当前输入中提到要买手机,或正在进行手机参数的收集)
- 电视机(用户在当前输入中提到要买电视机,或正在进行电视参数的收集)
- 冰箱(用户在当前输入中提到要买冰箱,或正在进行冰箱参数的收集)
- 其他(比如用户要买非上述三个产品、用户要买不止一个产品等情况)

输出示例:
手机
"""
router_agent = Assistants.create(
    model="qwen-plus",
    name='引导员,路由器',
    description='你是一个商城的引导员,负责将用户问题路由到不同的导购员。',
    instructions=ROUTER_AGENT_INSTRUCTION
)

3.2 手机导购助理

MOBILEPHONE_GUIDE_AGENT_INSTRUCTION = """你是负责给顾客推荐手机的智能导购员。

你需要按照下文中【手机的参数列表】中的顺序来主动询问用户需要什么参数的手机,一次只能问一个参数,不要对一个参数进行重复提问。
如果用户告诉了你这个参数值,你要继续询问剩余的参数。
如果用户询问这个参数的概念,你要用你的专业知识为他解答,并继续向他询问需要哪个参数。
如果用户有提到不需要继续购买商品,请输出:感谢光临,期待下次为您服务。

【手机的参数列表】
1.使用场景:【游戏、拍照、看电影】
2.屏幕尺寸:【6.4英寸、6.6英寸、6.8英寸、7.9英寸折叠屏】
3.RAM空间+存储空间:【8GB+128GB、8GB+256GB、12GB+128GB、12GB+256GB】

如果【参数列表】中的参数都已收集完毕,你要问他:“请问您是否确定购买?”,并同时将顾客选择的参数信息输出,如:用于拍照|8GB+128GB|6.6英寸。问他是否确定需要这个参数的手机。如果顾客决定不购买,要问他需要调整哪些参数。

如果顾客确定这个参数符合要求,你要按照以下格式输出:
【使用场景:拍照,屏幕尺寸:6.8英寸,存储空间:128GB,RAM空间:8GB】。请你只输出这个格式的内容,不要输出其它信息。"""

mobilephone_guide_agent = Assistants.create(
    model="qwen-max",
    name='手机导购',
    description='你是一个手机导购,你需要询问顾客想要什么参数的手机。',
    instructions=MOBILEPHONE_GUIDE_AGENT_INSTRUCTION
)

3.3 电视导购助理

TV_GUIDE_AGENT_INSTRUCTION = """你是负责给顾客推荐电视的智能导购员。

你需要按照下文中【电视的参数列表】中的顺序来主动询问用户需要什么参数的电视,一次只能问一个参数,不要对一个参数进行重复提问。
如果用户告诉了你这个参数值,你要继续询问剩余的参数。
如果用户询问这个参数的概念,你要用你的专业知识为他解答,并继续向他询问需要哪个参数。
如果用户有提到不需要继续购买商品,请输出:感谢光临,期待下次为您服务。

【电视的参数列表】
1.屏幕尺寸:【50英寸、70英寸、80英寸】
2.刷新率:【60Hz、120Hz、240Hz】
3.分辨率:【1080P、2K、4K】

如果【电视的参数列表】中的参数都已收集完毕,你要问他:“请问您是否确定购买?”,并同时将顾客选择的参数信息输出,如:50英寸|120Hz|1080P。问他是否确定需要这个参数的电视。如果顾客决定不购买,要问他需要调整哪些参数。

如果顾客确定这个参数符合要求,你要按照以下格式输出:
【屏幕尺寸:50英寸,刷新率:120Hz,分辨率:1080P】。请你只输出这个格式的内容,不要输出其它信息。"""

tv_guide_agent = Assistants.create(
    model="qwen-max",
    name='电视导购',
    description='你是一个电视导购,你需要询问顾客想要什么参数的电视。',
    instructions=TV_GUIDE_AGENT_INSTRUCTION
)

3.4 选择不同的 Agent 进行回复

agent_map = {
   
    "意图分类": router_agent.id,
    "手机": mobilephone_guide_agent.id,
    "冰箱": fridge_guide_agent.id,
    "电视机": tv_guide_agent.id
}

def chat(input_prompt, thread_id):
    # 首先根据用户问题及 thread 中存储的历史对话识别用户意图
    router_agent_response = get_agent_response(agent_name="意图分类", input_prompt=input_prompt, thread_id=thread_id)
    classification_result = parse_streaming_response(router_agent_response)

    response_json = {
   
        "content": "",
    }
    # 如果分类识别为其他时,引导用户调整提问方式
    if classification_result == "其他":
        return_json["content"] = "不好意思,我没有理解您的问题,能换个表述方式么?"
        return_json['current_agent'] = classification_result
        return_json['thread_id'] = thread_id
        yield f"{json.dumps(return_json)}\n\n"
    # 如果分类是手机、电视机或冰箱时,让对应的 Agent 进行回复
    else:
          agent_response = get_agent_response(agent_name=classification_result, input_prompt=input_prompt, thread_id=thread_id)
        for chunk in agent_response:
            response_json["content"] = chunk
            response_json['current_agent'] = classification_result
            response_json['thread_id'] = thread_id
            yield f"{json.dumps(response_json)}\n\n"

4、创建百炼商品检索应用并集成到智能导购中(可选)

在收集完客户的购买需求后,您可以借助这些需求描述进行商品检索和推荐。(在您的实际生产环境中,也可以替换为通过您的已有数据库检索。)

4.1 步骤一:创建百炼商品检索应用

4.1.1 创建知识库

百炼支持您上传表格文件到知识库中。本案例的导购场景包含三种商品信息手机信息.xlsx电视信息.xlsx冰箱信息.xlsx。此处以手机商品为例,向您介绍在百炼创建基于表格数据的知识库过程。

4.1.2 新增数据表

单击新增数据表数据表名称设为:百炼手机;设置列名为:系列、屏幕尺寸、像素值、存储空间、RAM大小、电池续航、价格

电视数据集对应列名为:品牌、屏幕尺寸、刷新率、分辨率、价格(元);冰箱数据集对应列名为:系列、容量、冷却方式、高度、能耗、价格(元)。

4.1.3 导入数据

在数据表管理界面找到百炼手机数据表,单击导入数据。将手机信息.xlsx作为知识库文件。您可以在导入数据界面进行上传。

截屏2024-11-03 20.01.41

4.1.4 创建知识库

单击创建知识库,将知识库名称改为百炼手机知识库数据类型选择结构化数据,其它参数保持默认即可,单击下一步。选中您创建的数据表,单击导入完成

tkbyqw.png

4.1.5 创建电视与冰箱数据库

重复以上步骤,创建百炼电视知识库百炼冰箱知识库

4.1.6 创建百炼应用
4.1.6.1 新增应用

访问我的应用,单击新增应用。在应用管理界面,修改应用名称为:商品信息存储bot;选择模型为通义千问-Plus,模型其它参数保持默认即可;打开知识检索增强开关,选择知识库百炼手机知识库、百炼电视知识库百炼冰箱知识库检索片段数设为10。在Prompt框中进行修改,修改后的Prompt为:

# 知识库
请记住以下材料,他们可能对回答问题有帮助。
${documents}
请你选出最相似的三个产品。
4.1.6.2 获取百炼应用ID

单击右上角的发布,即可通过API调用商品信息存储bot。在应用列表中可以查看商品信息存储bot的百炼应用 ID。

img

4.2 步骤二:将商品检索应用集成到智能导购中

4.2.1 修改函数计算应用的代码与环境变量

回到函数计算应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页

  1. 在代码视图中找到agents.py文件并进行修改。将以下内容取消注释:

img

  1. 如果您在创建函数计算应用时没有填入百炼应用ID,可以在函数详情页单击编辑环境变量,在BAILIAN_APP_ID处填入您的百炼应用ID,单击部署

img

  1. 单击部署代码,等待部署完成即可。
4.2.2 测试检索效果

您可以在刷新网站后,对智能导购进行测试,智能导购会将检索到的商品信息输出。

img

5、应用于生产环境

为了将智能导购适配到您的产品并应用于生产环境中,您可以:

  1. 修改知识库。将您的商品信息作为知识库,同时您也可以在商品参数中添加商品详情页或下单页的链接,方便顾客进行浏览与下单。您也可以通过已有的数据库或其它服务中进行商品检索。
  2. 修改源码中的prompt来适配到您的产品中。修改源码的步骤为:
    1. 回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页
    2. 进入函数详情页后,在代码视图中找到prompt.py、agents.py文件并进行修改。

prompt.py定义了agent的功能以及询问参数的顺序等信息;agents.py创建了agent,以及生成回复的函数。

  1. 单击部署代码,等待部署完成即可。
  2. 参考10分钟给网站添加AI助手中的应用于生产环境部分,将智能导购集成到您的网站中

欢迎大家体验、试用阿里云百炼大模型和阿里云服务产品,链接如下:

阿里云百炼大模型

https://bailian.console.aliyun.com/

通义灵码_智能编码助手面向用户上线个人和企业版产品

https://tongyi.aliyun.com/lingma/pricing?userCode=jl9als0w

云工开物_阿里云高校计划助力高校科研与教育加速。

https://university.aliyun.com/mobile?userCode=jl9als0w

无影云电脑个人版简单易用、安全高效的云上桌面服务

https://www.aliyun.com/product/wuying/gws/personal_edition?userCode=jl9als0w

云服务器ECS省钱攻略五种权益,限时发放,不容错过

https://www.aliyun.com/daily-act/ecs/ecs_trial_benefits?userCode=jl9als0w

相关实践学习
如何快速体验知识检索增强应用
在应用广场中您可以挑选智能体API应用、官方预置完整工程链路的知识检索增强(RAG)应用、流程编排应用,以及官方最佳实践的写作应用妙笔等,通过应用快速将通义千问系列等大语言模型能力接入到业务解决方案中。
相关文章
|
13天前
|
人工智能 API
【保姆级教程]】5分钟用阿里云百炼满血版DeepSeek, 手把手做一个智能体
阿里云推出手把手学AI直播活动,带你体验DeepSeek玩法。通过阿里云百炼控制台,用户可免费开通满血版R1模型,享受100w token免费额度。活动还包括实验步骤、应用开发教程及作业打卡赢好礼环节,提交优秀作品更有机会获得定制礼品。快来参与吧!
|
2月前
|
人工智能 自然语言处理 API
【活动系列】在阿里云百炼构建企业级多模态应用,发布作品赢取礼品
本次活动旨在鼓励开发者围绕AI应用开发实训课中的音视频交互和多模态RAG能力,在实训群内上传智能体效果截图或视频。活动时间为2025年1月22日至3月31日,分为作品提交、评审和结果公布三个阶段。参与者需在阿里云百炼平台上创建应用,并在规定时间内提交作品。奖项设置包括磁吸充电宝、定制保温杯和折叠雨伞等丰厚礼品。所有作品必须为原创,且需使用百炼平台完成。详细操作指南及注意事项请参见活动页面。
|
3月前
|
API 数据库 决策智能
基于百炼平台qwen-max的api 打造一套 检索增强 图谱增强 智能工具调用决策的智能体
本文介绍了一种基于阿里云百炼平台的`qwen-max` API构建的智能体方案,该方案集成了检索增强、图谱增强及智能工具调用决策三大模块,旨在通过结合外部数据源、知识图谱和自动化决策提高智能回答的准确性和丰富度。通过具体代码示例展示了如何实现这些功能,最终形成一个能灵活应对多种查询需求的智能系统。
309 11
|
3月前
|
自然语言处理 NoSQL API
基于百炼平台qwen-max的api 打造一套 检索增强 图谱增强 基于指令的智能工具调用决策 智能体
基于百炼平台的 `qwen-max` API,设计了一套融合检索增强、图谱增强及指令驱动的智能工具调用决策系统。该系统通过解析用户指令,智能选择调用检索、图谱推理或模型生成等工具,以提高问题回答的准确性和丰富性。系统设计包括指令解析、工具调用决策、检索增强、图谱增强等模块,旨在通过多种技术手段综合提升智能体的能力。
326 5
|
3月前
|
Go 开发工具
百炼-千问模型通过openai接口构建assistant 等 go语言
由于阿里百炼平台通义千问大模型没有完善的go语言兼容openapi示例,并且官方答复assistant是不兼容openapi sdk的。 实际使用中发现是能够支持的,所以自己写了一个demo test示例,给大家做一个参考。
|
2月前
|
人工智能 API UED
AI智能体再进化,工作流怎么玩?阿里云百炼上手教程
本次分享由讲师林粒粒呀介绍如何快速制作AI智能工具,特别是利用阿里云百炼平台创建工作流。通过简单的拖拽操作,小白用户也能轻松上手,实现从PPT主题到大纲的自动生成,并能一次性生成多个版本。借助API和Python脚本,还可以将Markdown格式的大纲转换为本地PPT文件。整个流程展示了AI智能体在实际应用中的高效性和实用性,帮助用户大幅提升工作效率。
483 32
|
2月前
|
搜索推荐 前端开发 API
构建智能导购助手:百炼大模型的实践与探索
智能导购助手利用百炼大模型的Multi-Agent架构,实现精准的商品推荐和主动式对话,解决购物时商品选择困难、需求沟通成本高、推荐缺乏个性化等问题。通过详细的部署实践和技术架构解析,本文带你深入了解如何打造一个高效、个性化的智能导购系统,提升购物体验与满意度。
191 6
构建智能导购助手:百炼大模型的实践与探索
|
3月前
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
150 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
3月前
|
人工智能 自然语言处理 JavaScript
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
Agent-E 是一个基于 AutoGen 代理框架构建的智能自动化系统,专注于浏览器内的自动化操作。它能够执行多种复杂任务,如填写表单、搜索和排序电商产品、定位网页内容等,从而提高在线效率,减少重复劳动。本文将详细介绍 Agent-E 的功能、技术原理以及如何运行该系统。
293 5
Agent-E:基于 AutoGen 代理框架构建的 AI 浏览器自动化系统
|
3月前
|
自然语言处理 搜索推荐 API
如何构建一套qwen-max智能体拥有媲美通义千问在线接口的能力
基于Qwen-Max构建的智能系统,融合了自然语言处理、决策引擎、任务识别与工具选择等技术,具备强大的多模态理解和生成能力。该系统能自动分析用户输入,识别任务类型,选择最优工具执行任务,并整合结果反馈给用户,广泛应用于查询、生成、翻译和图像处理等多个领域,显著提升了任务处理效率和智能化水平。
341 9

热门文章

最新文章

相关产品

  • 大模型服务平台百炼