基础架构组件选型及服务化

简介: 【10月更文挑战第15天】本文概述了分布式系统中常见的基础架构组件及其选型与服务化的重要性。

1、常见的分布式基础架构组件

  • 分布式服务化框架,业界开源产品比如 Dubbo、Spring Cloud 这样的框架;
  • 分布式缓存及框架,业界如 Redis、Memcached,框架如 Codis 和 Redis Cluster;
  • 数据库及分布式数据库框架,这两者是密不可分的,数据库如 MySQL、MariaDB 等,中间件如淘宝 TDDL(现在叫 DRDS)、Sharding-JDBC 等。当前非常火热的 TiDB,就直接实现了分布式数据库的功能,不再额外选择中间件框架;
  • 分布式的消息中间件,业界如 Kafka、RabbitMQ、ActiveMQ 以及 RocketMQ 等;
  • 前端接入层部分,如四层负载 LVS,七层负载 Nginx 或 Apache,再比如硬件负载 F5 等。

上面是几类主要的基础架构组件,为了便于理解以开源产品举例。但在实际场景中,很多公司为了满足业务上的个性化需求,会自己研发一些基础组件,比如服务化框架、消息中间件等,这个情况在有一定技术实力的公司里比较常见。不过大部分情况下,会基于这些开源产品做一些封装或局部的改造,以适应我们的业务。

2、基础架构组件的选型问题

大概都会遇到同样的问题,是自研还是选择开源产品?有这么多的开源产品到底该选哪一个?

从单纯的技术选型上来看,选择什么语言并没有严格的标准。而且在技术团队中,也应该鼓励技术多样性和尝试新技术。不过这里要有个度,假设没有统一标准的约束会带来什么问题。

1.开发层面

业务开发同学将大量的精力投入到基础组件和开源产品的研究、研发以及规模化之后的运维上,再加上产品形态的不统一,导致需要在技术层面的协作上做大量适配工作,而且经验还无法互通。

好不容易在一个产品上摸索了很长时间,踩了很多坑,积累了宝贵的经验,结果发现另外一个产品也要经历同样的一个过程,积累的经验依然不能互通和传递。

2.运维层面

当我们考虑建设一个统一的效率和稳定体系时,发现基础组件不统一,这个时候就需要做大量的针对不同组件的适配工作。

比如我们要在发布系统中做服务上下线处理,就要针对多个微服务化框架做适配。再举个稳定性上全链路跟踪的例子,为了在分布式复杂调用场景下的链路跟踪和问题定位,我们会在服务化框架中统一做打点功能,这样才不需要侵入业务逻辑。

就这样一个工作,如果服务化框架不统一,就需要到每个框架里都去开发一遍。不过现实中遇到的实际问题是,整个链路就是会有这样那样的情况而串联不起来。

同时还会出现维护投入不足,那就必然导致故障频发等一系列问题,团队内部也会因为问题定位不清楚而形成扯皮推诿的不良氛围。

所以,这个时候我们需要做的,就是对基础架构有统一的规划和建设。原则上,每种基础组件只允许一种选型,至少就能满足 90% 甚至更多的应用场景。

3、基础架构的服务化

对基础架构组件做了统一标准之后,下一步要做的就是服务化。因为这些组件都只提供了简单的维护功能,还有很多都是命令行层面的维护,这时要做的就是把这些组件提供的维护 API 进行封装,以提供更加便捷的运维能力。

以 Redis 缓存为例。

  • 创建和容量申请;
  • 容量的扩容和缩容,新增分片的服务发现及访问路由配置;
  • 运行指标监控,如 QPS、TPS、存储数据数量等等;
  • 主备切换能力等等。

以上这些,假设都依赖 Redis 提供的原生能力来做,基本是不可维护的。所以必须要基于这些原生能力进行封装,结合运维场景,将能力服务化,这样就大大提升了使用方的便利性。

要做的事情,可以归纳为两步:第一步是基础架构标准化,第二步是基础架构服务化。

运维必须要有意识去做的两件事情。

  1. 参与制定基础架构标准,并强势地约束。在这里运维作为线上稳定的 Owner,发挥约束作用有可能会比业务架构师这样的角色更为有效。另外,由于历史原因或其他种种因素造成的已有架构标准不统一的问题,是需要开发和运维共同合作去改造的。这里面如何保持良好的协作,制定统一的路线图也是非常重要的。所以这里强制约束是一方面,同时也要提供工具化的手段来支持开发的改造,也就是下面这个动作。
  2. 基础架构的服务化平台开发,目标是平台自助化,让开发依赖平台的能力自助完成对基础组件的需求,而不是依赖运维的人。这个事情是驱动运维转型和改进的动力,也是运维能够深入了解架构组件细节的有效途径。同时,要注意到,如果不朝着服务化方向发展,运维将始终被拖累在这些基础组件的运维操作上。
相关文章
|
2月前
|
消息中间件 存储 Java
RocketMQ(一):消息中间件缘起,一览整体架构及核心组件
【10月更文挑战第15天】本文介绍了消息中间件的基本概念和特点,重点解析了RocketMQ的整体架构和核心组件。消息中间件如RocketMQ、RabbitMQ、Kafka等,具备异步通信、持久化、削峰填谷、系统解耦等特点,适用于分布式系统。RocketMQ的架构包括NameServer、Broker、Producer、Consumer等组件,通过这些组件实现消息的生产、存储和消费。文章还提供了Spring Boot快速上手RocketMQ的示例代码,帮助读者快速入门。
|
2月前
|
存储 分布式计算 API
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
97 0
|
22天前
|
监控 前端开发 数据可视化
3D架构图软件 iCraft Editor 正式发布 @icraft/player-react 前端组件, 轻松嵌入3D架构图到您的项目,实现数字孪生
@icraft/player-react 是 iCraft Editor 推出的 React 组件库,旨在简化3D数字孪生场景的前端集成。它支持零配置快速接入、自定义插件、丰富的事件和方法、动画控制及实时数据接入,帮助开发者轻松实现3D场景与React项目的无缝融合。
82 8
3D架构图软件 iCraft Editor 正式发布 @icraft/player-react 前端组件, 轻松嵌入3D架构图到您的项目,实现数字孪生
|
1月前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
135 3
【赵渝强老师】基于大数据组件的平台架构
|
26天前
|
存储 Cloud Native NoSQL
云原生时代的数据库选型与架构设计
云原生时代的数据库选型与架构设计
23 0
|
2月前
|
SQL 存储 分布式计算
大数据-157 Apache Kylin 背景 历程 特点 场景 架构 组件 详解
大数据-157 Apache Kylin 背景 历程 特点 场景 架构 组件 详解
37 9
|
2月前
|
消息中间件 监控 Java
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
78 1
|
2月前
|
消息中间件 运维 NoSQL
基础架构组件选型及服务化
【10月更文挑战第2天】本文介绍了常见的分布式基础架构组件,包括分布式服务化框架(如Dubbo、Spring Cloud)、分布式缓存(如Redis、Memcached)、数据库及分布式数据库框架(如MySQL、TiDB)、消息中间件(如Kafka、RabbitMQ)和前端接入层(如LVS、Nginx)。文中探讨了组件选型问题,强调统一标准的重要性,避免重复劳动与维护难题。最后,提出基础架构服务化的必要性,通过标准化和平台化提升运维效率
|
12天前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
21天前
|
Cloud Native Devops 云计算
云计算的未来:云原生架构与微服务的革命####
【10月更文挑战第21天】 随着企业数字化转型的加速,云原生技术正迅速成为IT行业的新宠。本文深入探讨了云原生架构的核心理念、关键技术如容器化和微服务的优势,以及如何通过这些技术实现高效、灵活且可扩展的现代应用开发。我们将揭示云原生如何重塑软件开发流程,提升业务敏捷性,并探索其对企业IT架构的深远影响。 ####
34 3