MySQL与Redis协同作战:百万数据量的优化实录

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介: 【10月更文挑战第6天】在现代互联网应用中,随着用户量的增加和业务逻辑的复杂化,数据量级迅速增长,这对后端数据库系统提出了严峻的挑战。尤其是当数据量达到百万级别时,传统的数据库解决方案往往会遇到性能瓶颈。本文将分享一次使用MySQL与Redis协同优化大规模数据统计的实战经验。

在现代互联网应用中,随着用户量的增加和业务逻辑的复杂化,数据量级迅速增长,这对后端数据库系统提出了严峻的挑战。尤其是当数据量达到百万级别时,传统的数据库解决方案往往会遇到性能瓶颈。本文将分享一次使用MySQL与Redis协同优化大规模数据统计的实战经验。

面临挑战

在一次项目升级中,我们遇到了数据统计的性能瓶颈。随着数据量的激增,原有的单体数据库架构在处理复杂查询和大规模数据聚合时表现不佳,查询响应时间逐渐无法满足业务需求。

解决方案

为了解决这一问题,我们采取了MySQL与Redis的结合使用策略,通过以下步骤实现优化:

1. 数据库优化

数据库分片

我们将大数据量分散到多个MySQL数据库实例中,每个实例只存储部分数据,从而减轻单个数据库的负担。

读写分离

通过设置主从复制,我们将读操作和写操作分离,读操作分散到多个从服务器,写操作仍然在主服务器上进行。

2. Redis缓存策略

缓存热点数据

对于频繁访问且不常变更的数据,如用户信息、商品详情等,我们将其缓存在Redis中,以提高数据读取速度。

异步数据处理

对于非实时性的数据统计,我们采用异步处理方式,通过消息队列将任务分配给后台服务处理,避免阻塞主线程。

定期更新统计数据

在业务低峰期,我们定期计算并更新统计数据,存储在Redis中,以便在高峰期快速提供数据。

实施过程

  1. 数据库分片:根据业务逻辑和查询模式,我们将数据水平分割,分布到不同的数据库实例中。
  2. 读写分离:配置MySQL的主从复制,将读操作路由到从服务器,写操作在主服务器上执行。
  3. Redis缓存:实现数据的快速读取,减少对MySQL的直接访问。
  4. 异步处理:使用消息队列和后台服务处理非实时性数据统计任务。
  5. 定期更新:在系统负载较低时,预先计算并更新统计数据到Redis。

优化效果

通过上述优化措施,我们显著提升了数据统计的查询效率,查询响应时间从原来的数秒甚至数十秒降低到了秒级,用户体验得到了显著改善。

总结

MySQL与Redis的结合使用,为处理百万级数据量的统计查询提供了一种有效的解决方案。通过数据库分片、读写分离、热点数据缓存、异步处理和定期更新统计数据等策略,我们不仅提升了系统的处理能力,也优化了用户体验。这种优化策略不仅适用于数据统计场景,也适用于其他需要处理大规模数据的业务场景,具有广泛的应用价值。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
7天前
|
SQL 关系型数据库 MySQL
MySQL慢查询优化、索引优化、以及表等优化详解
本文详细介绍了MySQL优化方案,包括索引优化、SQL慢查询优化和数据库表优化,帮助提升数据库性能。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
MySQL慢查询优化、索引优化、以及表等优化详解
|
7天前
|
缓存 NoSQL 关系型数据库
Redis和Mysql如何保证数据⼀致?
在项目中,为了解决Redis与Mysql的数据一致性问题,我们采用了多种策略:对于低一致性要求的数据,不做特别处理;时效性数据通过设置缓存过期时间来减少不一致风险;高一致性但时效性要求不高的数据,利用MQ异步同步确保最终一致性;而对一致性和时效性都有高要求的数据,则采用分布式事务(如Seata TCC模式)来保障。
39 14
|
11天前
|
缓存 监控 关系型数据库
如何优化MySQL查询速度?
如何优化MySQL查询速度?【10月更文挑战第31天】
37 3
|
14天前
|
缓存 关系型数据库 MySQL
如何优化 MySQL 数据库的性能?
【10月更文挑战第28天】
37 1
|
15天前
|
监控 关系型数据库 MySQL
数据库优化:MySQL索引策略与查询性能调优实战
【10月更文挑战第27天】本文深入探讨了MySQL的索引策略和查询性能调优技巧。通过介绍B-Tree索引、哈希索引和全文索引等不同类型,以及如何创建和维护索引,结合实战案例分析查询执行计划,帮助读者掌握提升查询性能的方法。定期优化索引和调整查询语句是提高数据库性能的关键。
78 1
|
存储 NoSQL 关系型数据库
如何基于MySQL及Redis搭建统一的kv存储服务 | 秦波
本文介绍基于MySQL及Redis搭建统一的kv存储服务:常用部署方式及其特点,Cluster manager,MySQL和Redis集群方案,以及Sync数据同步服务。
13898 0
|
1月前
|
存储 缓存 NoSQL
数据的存储--Redis缓存存储(一)
数据的存储--Redis缓存存储(一)
|
1月前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
74 6
|
6天前
|
缓存 NoSQL 关系型数据库
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
本文详解缓存雪崩、缓存穿透、缓存并发及缓存预热等问题,提供高可用解决方案,帮助你在大厂面试和实际工作中应对这些常见并发场景。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
大厂面试高频:如何解决Redis缓存雪崩、缓存穿透、缓存并发等5大难题
|
7天前
|
存储 缓存 NoSQL
【赵渝强老师】基于Redis的旁路缓存架构
本文介绍了引入缓存后的系统架构,通过缓存可以提升访问性能、降低网络拥堵、减轻服务负载和增强可扩展性。文中提供了相关图片和视频讲解,并讨论了数据库读写分离、分库分表等方法来减轻数据库压力。同时,文章也指出了缓存可能带来的复杂度增加、成本提高和数据一致性问题。
【赵渝强老师】基于Redis的旁路缓存架构