MySQL与Redis协同作战:百万数据量的优化实录

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 【10月更文挑战第6天】在现代互联网应用中,随着用户量的增加和业务逻辑的复杂化,数据量级迅速增长,这对后端数据库系统提出了严峻的挑战。尤其是当数据量达到百万级别时,传统的数据库解决方案往往会遇到性能瓶颈。本文将分享一次使用MySQL与Redis协同优化大规模数据统计的实战经验。

在现代互联网应用中,随着用户量的增加和业务逻辑的复杂化,数据量级迅速增长,这对后端数据库系统提出了严峻的挑战。尤其是当数据量达到百万级别时,传统的数据库解决方案往往会遇到性能瓶颈。本文将分享一次使用MySQL与Redis协同优化大规模数据统计的实战经验。

面临挑战

在一次项目升级中,我们遇到了数据统计的性能瓶颈。随着数据量的激增,原有的单体数据库架构在处理复杂查询和大规模数据聚合时表现不佳,查询响应时间逐渐无法满足业务需求。

解决方案

为了解决这一问题,我们采取了MySQL与Redis的结合使用策略,通过以下步骤实现优化:

1. 数据库优化

数据库分片

我们将大数据量分散到多个MySQL数据库实例中,每个实例只存储部分数据,从而减轻单个数据库的负担。

读写分离

通过设置主从复制,我们将读操作和写操作分离,读操作分散到多个从服务器,写操作仍然在主服务器上进行。

2. Redis缓存策略

缓存热点数据

对于频繁访问且不常变更的数据,如用户信息、商品详情等,我们将其缓存在Redis中,以提高数据读取速度。

异步数据处理

对于非实时性的数据统计,我们采用异步处理方式,通过消息队列将任务分配给后台服务处理,避免阻塞主线程。

定期更新统计数据

在业务低峰期,我们定期计算并更新统计数据,存储在Redis中,以便在高峰期快速提供数据。

实施过程

  1. 数据库分片:根据业务逻辑和查询模式,我们将数据水平分割,分布到不同的数据库实例中。
  2. 读写分离:配置MySQL的主从复制,将读操作路由到从服务器,写操作在主服务器上执行。
  3. Redis缓存:实现数据的快速读取,减少对MySQL的直接访问。
  4. 异步处理:使用消息队列和后台服务处理非实时性数据统计任务。
  5. 定期更新:在系统负载较低时,预先计算并更新统计数据到Redis。

优化效果

通过上述优化措施,我们显著提升了数据统计的查询效率,查询响应时间从原来的数秒甚至数十秒降低到了秒级,用户体验得到了显著改善。

总结

MySQL与Redis的结合使用,为处理百万级数据量的统计查询提供了一种有效的解决方案。通过数据库分片、读写分离、热点数据缓存、异步处理和定期更新统计数据等策略,我们不仅提升了系统的处理能力,也优化了用户体验。这种优化策略不仅适用于数据统计场景,也适用于其他需要处理大规模数据的业务场景,具有广泛的应用价值。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
打赏
0
1
3
0
80
分享
相关文章
MySQL底层概述—8.JOIN排序索引优化
本文主要介绍了MySQL中几种关键的优化技术和概念,包括Join算法原理、IN和EXISTS函数的使用场景、索引排序与额外排序(Using filesort)的区别及优化方法、以及单表和多表查询的索引优化策略。
MySQL底层概述—8.JOIN排序索引优化
MySQL底层概述—7.优化原则及慢查询
本文主要介绍了:Explain概述、Explain详解、索引优化数据准备、索引优化原则详解、慢查询设置与测试、慢查询SQL优化思路
MySQL底层概述—7.优化原则及慢查询
MySQL底层概述—5.InnoDB参数优化
本文介绍了MySQL数据库中与内存、日志和IO线程相关的参数优化,旨在提升数据库性能。主要内容包括: 1. 内存相关参数优化:缓冲池内存大小配置、配置多个Buffer Pool实例、Chunk大小配置、InnoDB缓存性能评估、Page管理相关参数、Change Buffer相关参数优化。 2. 日志相关参数优化:日志缓冲区配置、日志文件参数优化。 3. IO线程相关参数优化: 查询缓存参数、脏页刷盘参数、LRU链表参数、脏页刷盘相关参数。
MySQL底层概述—5.InnoDB参数优化
MySQL和SQLSugar百万条数据查询分页优化
在面对百万条数据的查询时,优化MySQL和SQLSugar的分页性能是非常重要的。通过合理使用索引、调整查询语句、使用缓存以及采用高效的分页策略,可以显著提高查询效率。本文介绍的技巧和方法,可以为开发人员在数据处理和查询优化中提供有效的指导,提升系统的性能和用户体验。掌握这些技巧后,您可以在处理海量数据时更加游刃有余。
36 9
图解MySQL【日志】——磁盘 I/O 次数过高时优化的办法
当 MySQL 磁盘 I/O 次数过高时,可通过调整参数优化。控制刷盘时机以降低频率:组提交参数 `binlog_group_commit_sync_delay` 和 `binlog_group_commit_sync_no_delay_count` 调整等待时间和事务数量;`sync_binlog=N` 设置 write 和 fsync 频率,`innodb_flush_log_at_trx_commit=2` 使提交时只写入 Redo Log 文件,由 OS 择机持久化,但两者在 OS 崩溃时有丢失数据风险。
19 3
Docker Compose V2 安装常用数据库MySQL+Mongo
以上内容涵盖了使用 Docker Compose 安装和管理 MySQL 和 MongoDB 的详细步骤,希望对您有所帮助。
121 42
如何排查和解决PHP连接数据库MYSQL失败写锁的问题
通过本文的介绍,您可以系统地了解如何排查和解决PHP连接MySQL数据库失败及写锁问题。通过检查配置、确保服务启动、调整防火墙设置和用户权限,以及识别和解决长时间运行的事务和死锁问题,可以有效地保障应用的稳定运行。
67 25
数据库数据恢复——MySQL简介和数据恢复案例
MySQL数据库数据恢复环境&故障: 本地服务器,安装的windows server操作系统。 操作系统上部署MySQL单实例,引擎类型为innodb,表空间类型为独立表空间。该MySQL数据库没有备份,未开启binlog。 人为误操作,在用Delete命令删除数据时未添加where子句进行筛选导致全表数据被删除,删除后未对该表进行任何操作。
【深入了解MySQL】优化查询性能与数据库设计的深度总结
本文详细介绍了MySQL查询优化和数据库设计技巧,涵盖基础优化、高级技巧及性能监控。
366 0
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等