Ultralytics YOLOv5简介

简介: Ultralytics YOLOv5简介

YOLOv5, the fifth iteration of the revolutionary "You Only Look Once" object detection model, is designed to deliver high-speed, high-accuracy results in real-time.

YOLOv5是革命性的*你只要看一次*目标检测模型的第五个迭代版本,旨在实时提供高速、高精度的结果。

Built on PyTorch, this powerful deep learning framework has garnered immense popularity for its versatility, ease of use, and high performance. Our documentation guides you through the installation process, explains the architectural nuances of the model, showcases various use-cases, and provides a series of detailed tutorials. These resources will help you harness the full potential of YOLOv5 for your computer vision projects.

构建在PyTorch之上,这个强大的深度学习框架因其多功能性、易用性和高性能而广受欢迎。我们的文档将指导您完成安装过程,解释模型的架构细节,展示各种用例,并提供一系列详细的教程[1]。这些资源将帮助您充分发挥YOLOv5在您的计算机视觉项目中的潜力。

  • 代码仓安装:
git clone https://github.com/ultralytics/yolov5  # clone
cd yolov5
pip install -r requirements.txt  # install
  • 推理
import torch
# Model
model = torch.hub.load("ultralytics/yolov5", "yolov5s")  # or yolov5n - yolov5x6, custom
# Images
img = "https://ultralytics.com/images/zidane.jpg"  # or file, Path, PIL, OpenCV, numpy, list
# Inference
results = model(img)
# Results
results.print()  # or .show(), .save(), .crop(), .pandas(), etc.
  • 训练
python train.py --data coco.yaml --epochs 300 --weights '' --cfg yolov5n.yaml  --batch-size 128
                                                                 yolov5s                    64
                                                                 yolov5m                    40
                                                                 yolov5l                    24
                                                                 yolov5x                    16

参考:

[1] GitHub - ultralytics/yolov5: YOLOv5 🚀 in PyTorch > ONNX > CoreML > TFLite

目录
相关文章
|
11月前
|
并行计算 计算机视觉
yolov5的detect.py的详细讲解
这篇文章详细讲解了YOLOv5的`detect.py`脚本中的参数,包括模型权重、输入源、图像尺寸、置信度阈值、IOU阈值、设备选择、结果显示、结果保存等,以及如何使用这些参数进行目标检测。
615 1
|
11月前
|
数据处理 算法框架/工具 计算机视觉
手把手教你使用YOLOV5训练自己的目标检测模型
本教程由肆十二(dejahu)撰写,详细介绍了如何使用YOLOV5训练口罩检测模型,涵盖环境配置、数据标注、模型训练、评估与使用等环节,适合大作业及毕业设计参考。提供B站视频、CSDN博客及代码资源链接,便于学习实践。
4602 1
手把手教你使用YOLOV5训练自己的目标检测模型
|
11月前
|
运维 监控 搜索推荐
【电商搜索】现代工业级电商搜索技术-Ha3搜索引擎平台简介
【电商搜索】现代工业级电商搜索技术-Ha3搜索引擎平台简介
424 0
|
11月前
|
PyTorch TensorFlow 算法框架/工具
手把手教你-MAC笔记本安装Pytorch环境
手把手教你-MAC笔记本安装Pytorch环境
540 0
|
11月前
|
JavaScript 前端开发
使用通义灵码的@workspace和@terminal功能,快速熟悉并开发一个在线商城项目
使用通义灵码的@workspace和@terminal功能,快速熟悉并开发一个在线商城项目
|
11月前
|
机器学习/深度学习 人工智能 自然语言处理
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-18
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-18
111 0
|
11月前
|
机器学习/深度学习 人工智能 算法
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-14(下)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-14(下)
127 0
|
11月前
|
机器学习/深度学习 人工智能 算法
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-14(上)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-14(上)
64 0
|
11月前
|
机器学习/深度学习 自然语言处理 算法
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-13(下)
计算机前沿技术-人工智能算法-大语言模型-最新论文阅读-2024-09-13(下)
69 0
|
11月前
|
Web App开发 人工智能 前端开发
Google 浏览器中的 AI 魔法 — window.ai
本文介绍了如何在 Chrome Canary 中启用并使用设备端 AI 功能。通过下载 Chrome Canary 并启用相关 API,你可以在本地运行 AI 模型,无需互联网连接。文章详细讲解了设置步骤、确认 AI 可用性的方法以及如何使用 `window.ai` 进行文本会话。虽然目前的性能和功能还有待提升,但这一技术为未来的前端开发和智能应用提供了无限可能。
680 0