YOLO11-seg分割:具有切片操作的SimAM注意力,魔改SimAM助力分割

本文涉及的产品
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 本文创新地对SimAM注意力机制进行魔改,引入切片操作,显著提升了小目标特征提取能力。针对SimAM在计算整张特征图的像素差平均值时可能忽略小目标重要性的问题,通过切片操作增强了小目标的加权效果。实验结果显示,魔改后的SimAM在YOLO11-seg上的Mask mAP50从0.673提升至0.681,有效改善了小目标检测性能。

💡💡💡本文创新:魔改SimAM注意力,引入切片操作,增强小目标特征提取能力

💡💡💡问题点:SimAM计算整张特征图的像素差平均值时加权可能会忽略小目标的重要性,同时与整体平均值相比可能和背景信息相似,导致加权增强较弱,进而使得SimAM对小目标的增强能力较差。

💡💡💡本文内容:通过魔改SimAM注意力提升YOLO11-seg的分割能力

💡💡💡Mask mAP50 从原始的0.673 提升至0.681

image.gif

 《YOLOv11魔术师专栏》将从以下各个方向进行创新:

YOLO11魔术师

原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化 【小目标性能提升】前沿论文分享】【训练实战篇】

pose关键点检测】【yolo11-seg分割】

定期向订阅者提供源码工程,配合博客使用。

订阅者可以申请发票,便于报销

💡💡💡为本专栏订阅者提供创新点改进代码,改进网络结构图,方便paper写作!!!

💡💡💡适用场景:红外、小目标检测、工业缺陷检测、医学影像、遥感目标检测、低对比度场景

💡💡💡适用任务:所有改进点适用【检测】、【分割】、【pose】、【分类】等

💡💡💡全网独家首发创新,【自研多个自研模块】,【多创新点组合适合paper 】!!!

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

包含注意力机制魔改、卷积魔改、检测头创新、损失&IOU优化、block优化&多层特征融合、 轻量级网络设计、24年最新顶会改进思路、原创自研paper级创新等

🚀🚀🚀 本项目持续更新 | 更新完结保底≥80+ ,冲刺100+ 🚀🚀🚀

🍉🍉🍉 联系WX: AI_CV_0624 欢迎交流!🍉🍉🍉

⭐⭐⭐专栏涨价趋势 159 ->199->259->299,越早订阅越划算⭐⭐⭐

💡💡💡 2024年计算机视觉顶会创新点适用于Yolov5、Yolov7、Yolov8、Yolov9等各个Yolo系列,专栏文章提供每一步步骤和源码,轻松带你上手魔改网络 !!!

💡💡💡重点:通过本专栏的阅读,后续你也可以设计魔改网络,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现创新!!!

☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️ ☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️☁️

1.YOLO11介绍

Ultralytics YOLO11是一款尖端的、最先进的模型,它在之前YOLO版本成功的基础上进行了构建,并引入了新功能和改进,以进一步提升性能和灵活性。YOLO11设计快速、准确且易于使用,使其成为各种物体检测和跟踪、实例分割、图像分类以及姿态估计任务的绝佳选择。

image.gif

image.gif

Segmentation 官方在COCO数据集上做了更多测试:

image.gif

2.数据集介绍

道路裂纹分割数据集是一个全面的4029张静态图像集合,专门为交通和公共安全研究而设计。它非常适合自动驾驶汽车模型开发和基础设施维护等任务。该数据集包括训练、测试和验证集,有助于精确的裂缝检测和分割。

训练集3712张,验证集200张,测试集112张

image.gif

标签可视化:

image.gif

3.如何训练YOLO11-seg模型

3.1 修改 crack-seg.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# Crack-seg dataset by Ultralytics
# Documentation: https://docs.ultralytics.com/datasets/segment/crack-seg/
# Example usage: yolo train data=crack-seg.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── crack-seg  ← downloads here (91.2 MB)
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:/ultralytics-seg/data/crack-seg # dataset root dir
train: train/images # train images (relative to 'path') 3717 images
val: valid/images # val images (relative to 'path') 112 images
test: test/images # test images (relative to 'path') 200 images
# Classes
names:
  0: crack

image.gif

3.2 如何开启训练

import warnings
warnings.filterwarnings('ignore')
from ultralytics import YOLO
if __name__ == '__main__':
    model = YOLO('ultralytics/cfg/models/11/yolo11-seg.yaml')
    #model.load('yolov8n.pt') # loading pretrain weights
    model.train(data='data/crack-seg.yaml',
                cache=False,
                imgsz=640,
                epochs=200,
                batch=16,
                close_mosaic=10,
                device='0',
                optimizer='SGD', # using SGD
                project='runs/train',
                name='exp',
                )

image.gif

3.3  训练结果可视化

YOLO11-seg summary (fused): 265 layers, 2,834,763 parameters, 0 gradients, 10.2 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100%|██████████| 7/7 [00:07<00:00,  1.06s/it]
                   all        200        249       0.83      0.784      0.816      0.632      0.746      0.707      0.673      0.228

image.gif

Mask mAP50 为 0.673

MaskPR_curve.png

image.gif

BoxPR_curve.png

image.gif

3.4  魔改SimAM

原文链接:YOLOv11全网首发:注意力独家魔改 | 具有切片操作的SimAM注意力,魔改SimAM助力小目标检测-CSDN博客

摘要:SimAM是一个无神经网络的特征增强模块,具有轻量级的优点,且在提升识别性能方面有潜力,基于此我们设计了新模块sws,之所以加入切片操作是因为SimAM计算整张特征图的像素差平均值时加权可能会忽略小目标的重要性,小目标在航拍图像中占比比较小,与整体平均值相比可能和背景信息相似,导致加权增强较弱,进而使得SimAM对小目标的增强能力较差

因此我们引入了切片操作,当特征图被切成不同的块后,大目标由于其纹理特征明显会影响所在块的平均值,导致其获得的额外加权减少,而合并特征图后,大目标依然可以保持高可识别度甚至获得进一步增强;而小目标的特征与局部平均值差距更大,从而获得更多加权,小目标特征得到增强,即sws模块保证了大、小目标都获得了公正的关注和增强。

image.gif

YOLO11-seg-Conv_SWS summary (fused): 293 layers, 2,835,451 parameters, 0 gradients, 10.2 GFLOPs
                 Class     Images  Instances      Box(P          R      mAP50  mAP50-95)     Mask(P          R      mAP50  mAP50-95): 100%|██████████| 7/7 [00:08<00:00,  1.20s/it]
                   all        200        249      0.856      0.759      0.814      0.645      0.783      0.666      0.681      0.236

image.gif

 

Mask mAP50 从原始的0.673 提升至0.681


目录
相关文章
|
2月前
|
机器学习/深度学习 JSON 算法
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
本文介绍了DeepLab V3在语义分割中的应用,包括数据集准备、模型训练、测试和评估,提供了代码和资源链接。
293 0
语义分割笔记(二):DeepLab V3对图像进行分割(自定义数据集从零到一进行训练、验证和测试)
|
7月前
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进】 SPD-Conv空间深度转换卷积,处理低分辨率图像和小对象问题 (论文笔记+引入代码)
YOLO目标检测专栏探讨了CNN在低分辨率和小目标检测中的局限性,提出SPD-Conv新架构,替代步长卷积和池化层,通过空间到深度层和非步长卷积保持细粒度信息。创新点包括消除信息损失、通用设计和性能提升。YOLOv5和ResNet应用SPD-Conv后,在困难任务上表现优越。详情见YOLO有效改进系列及项目实战目录。
|
移动开发 数据可视化 算法
Pointnet语义分割任务S3DIS数据集
Pointnet语义分割任务S3DIS数据集
521 0
|
7月前
|
机器学习/深度学习 并行计算 网络架构
YOLOv5改进 | 卷积篇 | 手把手教你添加动态蛇形卷积(管道结构检测适用于分割Seg)
YOLOv5改进 | 卷积篇 | 手把手教你添加动态蛇形卷积(管道结构检测适用于分割Seg)
280 0
|
7月前
|
机器学习/深度学习 存储 计算机视觉
YOLOv8改进 | 2023主干篇 | EfficientViT替换Backbone(高效的视觉变换网络)
YOLOv8改进 | 2023主干篇 | EfficientViT替换Backbone(高效的视觉变换网络)
349 0
|
测试技术 PyTorch TensorFlow
Yolov5-6.2 正式发布 | Yolov5 也可以训练分类模型啦,语义分割+实例分割很快到来
Yolov5-6.2 正式发布 | Yolov5 也可以训练分类模型啦,语义分割+实例分割很快到来
576 0
|
机器学习/深度学习 编解码 计算机视觉
重新思考空洞卷积 | RegSeg超越DeepLab、BiSeNetv2让语义分割实时+高精度(二)
重新思考空洞卷积 | RegSeg超越DeepLab、BiSeNetv2让语义分割实时+高精度(二)
235 0
|
编解码 自动驾驶 机器人
重新思考空洞卷积 | RegSeg超越DeepLab、BiSeNetv2让语义分割实时+高精度(一)
重新思考空洞卷积 | RegSeg超越DeepLab、BiSeNetv2让语义分割实时+高精度(一)
157 0
|
机器学习/深度学习 计算机视觉
高效Transformer | 85FPS!CNN + Transformer语义分割的又一境界,真的很快!
高效Transformer | 85FPS!CNN + Transformer语义分割的又一境界,真的很快!
207 0
|
机器学习/深度学习 存储 人工智能
用CNN做基础模型,可变形卷积InternImage实现检测分割新纪录!
用CNN做基础模型,可变形卷积InternImage实现检测分割新纪录!
242 0
下一篇
DataWorks