JVM进阶调优系列(5)CMS回收器通俗演义一文讲透FullGC

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 本文介绍了JVM中CMS垃圾回收器对Full GC的优化,包括Stop the world的影响、Full GC触发条件、GC过程的四个阶段(初始标记、并发标记、重新标记、并发清理)及并发清理期间的Concurrent mode failure处理,并简述了GC roots的概念及其在GC中的作用。

最近读书学习心理健康相关知识,学到了三个当下打工人常见状态概念:

1、悲伤、抑郁、焦虑,分别制造了过去之熵,现在之熵、未来之熵。心理情绪熵减调理,需要解决掉这些负熵。

     JVM的调优,重中之中就是FullGC的优化。FullGC由于Stop the world耗时大,快的的几秒,慢的几十秒,对业务的正常运行造成了负面影响。本文主角CMS垃圾回收器在对FullGC做了充足的优化,值得深入探讨学习。

一、让人头疼的Stop the world

    Stop the world发生后,jvm程序的全部线程暂停运行,不能创建对象,让垃圾回收器专注清理垃圾对象。此时我们的接口响应被迫延迟,最终传导影响业务客户系统丝滑体验。在G1回收器出现之前,这个stop the world一直是JVM的最大痛点。

二、什么时候会触发FullGC?

   YGC也会stop the world,只是YGC耗时短,影响不明显。这里不赘述YGC的时机,之前文章已分享过,这里详细分析FullGC触发时机。

2.1 空间担保机制

   JDK8默认是开启。具体就是如果当前老年代可用空间小于年轻代全部对象的大小,由于有空间担保机制,不会马上发生Full GC,而会再看看其他条件。如果没有空间担保机制,就会马上发生Full GC。

2.2 比较历次YGC存活进入老年代的平均对象大小

    当前老年代可用空间小于历次YGC后进入老年代的平均对象大小,会发生Full GC。

2.3 比较老年代可用空间

   YGC存活的对象过大,S区存放不小,而且老年代可用空闲空间也不放心,就发生Full GC。

2.4 检查-XX:CMSInitiatingOccupancyFaction参数

   这个值默认是92%。如果配置该参数即使老年代可用空间大于历次YGC后进入老年代的平均对象大小,但是当前老年代占用大于92%空间,CMS垃圾回收器也会进行FullGC。配这个参数的好处在于,老年代有预留的8%空间,让JVM在CMS并发回收期间,系统还可以继续把一些新对象存入老年代。

三、为什么Full GC慢?

      这个之前有分享过,就是并发整理过程比较慢,涉及GC roots追踪对象,以及内存碎片整理。这两个过程很复杂,然后关于内存碎片整理,有2个参数有必要说一下。

3.1 -XX:+UseCMSCompactAtFullCollection

   默认是打开。顾名思义这个参数的作用就是用来做内存碎片整理。具体就是CMS 完成Full GC后,再次进行stop the world,然后将存活对象挪到一起,空出来一片连续内存,避免内存碎片。

3.2 -XX:+CMSFullGCCsBeforeCompaction

   CMS垃圾回收器Full GC多少次后才开始做内存碎片整理,默认就是0,意味着每次FGC后都整理碎片。这个是官方推荐,也是比较合适的。如果设置为5,就是5次Full GC后才进行内存碎片整理,会导致老年代在前5次Full GC后有比较多的内存碎片,这个参数需要慎重考虑优化配置。

   那导致Full GC慢的另一个原因:GC roots追踪,又是什么呢?

四、GC roots是什么?

   GC Roots是垃圾收集器可以访问的引用对象,通过这些对象可以找到其他所有可达的对象。比如:虚拟机栈中的对象引用(典型的局部变量、方法里new实例对象名地址):之前文章说过每个线程都有一个私有的Java虚拟机栈,该线程执行每个方法的调用执行,都会将一个栈帧在线程的虚拟机栈中入栈出栈。如果一个变量、或实例对象在方法执行过程中被引用,则该对象可以作为GC Roots,以及static修饰的类静态变量都是GC Roots。具体还有很多这里不赘述。

五、对对象进行GC Roots追踪和GC roots标记有啥区别?

    GC roots标记,就是遍历GC roots,看看他们引用的对象是哪些。也就是通过GC roots根对象引用,去找具体对象。而【对象进行GC Roots追踪】,刚好相反。这是通过遍历全部对象,然后看看每个对象是否有对应GC roots引用。

    理解了这两点,一会看CMS的四阶段GC处理就很方便。

六、CMS垃圾回收器处理FGC的四个阶段

6.1 初始标记

   首先stop the world,系统的工作线程全部暂停。CMS开始初始标记,这个阶段就是标记出所有GC roots引用的对象。虽然导致代码程序暂停,但是CMS的垃圾回收是多个回收线程并发执行,默认回收线程数量=(系统cpu核数+3)/4,标记效率很高,这个阶段对系统几乎无感影响。

   比如以下代码,执行到方法gcRootsHere()的System.out.println发生了FGC,那初始阶段就是回收线程,在老年代区域根据类静态变量name,userA,还有和法局部变量user的地址引用,去把这些GC roots引用的对象标记出来。


public class Demo002JvmShow {
    public static final String name = "我是类静态变量";
    public static User userA = new User("A");
    private Object object = new Object();
    private boolean isOk = 10 / 2 == 4 ? true : false;
    public void gcRootsHere(){
        int a = 5;
        User user = new User("我是实例对象,我有GC roots引用我,不许回收我");
        System.out.println("线程执行到这里,发送了FullGC .....");
    }

6.2 并发标记

   这个阶段,运行程序从暂停状态stop the world 变成继续运行,以及继续做标记。这个阶段些微复杂一些,因为这时候系统继续运行,肯定就会产生新的对象,也有的对象变成了垃圾对象。回收线程,这时候的标记和阶段1【初始标记】有所不同。这时候是对老年代所有对象进行GC roots追踪。什么意思呢?

    就是遍历老年代的对象,看看这个对象被谁引用,一级级往上找,看最终是否有被GC roots引用。这个是不是有点意思,和初始标记反着来?一个是从上往下,一个是从下往上。

    这个阶段非常耗时,一个是因为老年代发生FGC说明老年代对象很多,另外一个就是追踪链路很长,一层层去追踪,向上找是否有被GC roots引用。如果没有被引用就是垃圾对象,一会可以回收。

   虽然很耗时,但是好在是程序恢复了继续运行,也就影响不大。

6.3 重新标记

   并发标记结束后,由于程序恢复运行,产生了很多新对象,最重要的是有很多对象在这期间变成了垃圾对象,这时候就需要重新标记把他们标出来,也一并回收。

   重新标记阶段,采用的是stop the world,这样就可以避免有新垃圾产生,彻底标记垃圾对象。

   这个阶段,运行也是非常快,原因是只对阶段二程序继续运行影响到的对象进行标记,这个数量肯定是比较少。所以这次stop the world也影响不大。看完这里,不得不佩服CMS的优秀设计,对FGC的优化真是做到极致。

6.4 并发清理

   经历了【初始标记】【并发标记】【重新标记】三个阶段标记,所有垃圾对象都标记出来,那开始做清理了。

   这个阶段,竟然是并发,就是允许程序工作线程恢复运行。系统一边运行,CMS垃圾回收器对垃圾对象进行回收整理。这个阶段实际是非常耗时,比如整理碎片,整理存活对象。但是因为程序可以继续运行,那影响也很小。

七、正在进行FullGC,老年代放不下程序产生的新对象就会直接OOM了吗?

   我们知道在【并发清理】这个期间,程序是可以正常运行的。原因是老年代在回收碎片,程序依然可以继续往里面放新对象。此时如果系统要往老年代放新对象,放不下(为啥会往老年代放新对象?这个看过前几篇的文章同学就知道,有些对象是可以直接进老年代的),这时候会发生Concurrent mode failure,而不是OOM。这时候JVM自动使用Serial Old垃圾回收器替换CMS回收器,强行让程序stop the word,程序暂停运行,不允许新对象生成。直到GC完成后再恢复。

八、看看这份JVM调优入参,分别代表什么?

-Xmx4096, -Xms2048,  -Xmn2048 -Xss2m -XX:SurvivorRatio=8 
-XX:MetaspaceSize=128m -XX:MaxMetaspaceSize=512m
 -XX:+UseParNewGC -XX:+UseConcMarkSweepGC 
 XX:MaxTenuringThreshold=10  -XX:CMSInitiatingOccupancyFaction 
 -XX:+PrintGC  -XX:+HeapDumpOnOutOfMemoryError 
 -XX:HeapDumpPath=${LOGDIR}/-

这个问题我们下一篇给探讨分析。

推荐阅读:

1、JVM进阶调优系列(3)堆内存的对象什么时候被回收?

2、JVM进阶调优系列(2)字节面试:JVM内存区域怎么划分,分别有什么用?

3、JVM进阶调优系列(1)类加载器原理一文讲透

4、JAVA并发编程系列(13)Future、FutureTask异步小王子

相关文章
|
6天前
|
编解码 Java 程序员
写代码还有专业的编程显示器?
写代码已经十个年头了, 一直都是习惯直接用一台Mac电脑写代码 偶尔接一个显示器, 但是可能因为公司配的显示器不怎么样, 还要接转接头 搞得桌面杂乱无章,分辨率也低,感觉屏幕还是Mac自带的看着舒服
|
8天前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1563 10
|
1月前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
11天前
|
人工智能 Rust Java
10月更文挑战赛火热启动,坚持热爱坚持创作!
开发者社区10月更文挑战,寻找热爱技术内容创作的你,欢迎来创作!
738 27
|
8天前
|
存储 SQL 关系型数据库
彻底搞懂InnoDB的MVCC多版本并发控制
本文详细介绍了InnoDB存储引擎中的两种并发控制方法:MVCC(多版本并发控制)和LBCC(基于锁的并发控制)。MVCC通过记录版本信息和使用快照读取机制,实现了高并发下的读写操作,而LBCC则通过加锁机制控制并发访问。文章深入探讨了MVCC的工作原理,包括插入、删除、修改流程及查询过程中的快照读取机制。通过多个案例演示了不同隔离级别下MVCC的具体表现,并解释了事务ID的分配和管理方式。最后,对比了四种隔离级别的性能特点,帮助读者理解如何根据具体需求选择合适的隔离级别以优化数据库性能。
225 3
|
15天前
|
Linux 虚拟化 开发者
一键将CentOs的yum源更换为国内阿里yum源
一键将CentOs的yum源更换为国内阿里yum源
787 5
|
2天前
|
Python
【10月更文挑战第10天】「Mac上学Python 19」小学奥数篇5 - 圆和矩形的面积计算
本篇将通过 Python 和 Cangjie 双语解决简单的几何问题:计算圆的面积和矩形的面积。通过这道题,学生将掌握如何使用公式解决几何问题,并学会用编程实现数学公式。
108 60
|
1天前
|
人工智能
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
云端问道12期-构建基于Elasticsearch的企业级AI搜索应用陪跑班获奖名单公布啦!
115 1
|
3天前
|
Java 开发者
【编程进阶知识】《Java 文件复制魔法:FileReader/FileWriter 的奇妙之旅》
本文深入探讨了如何使用 Java 中的 FileReader 和 FileWriter 进行文件复制操作,包括按字符和字符数组复制。通过详细讲解、代码示例和流程图,帮助读者掌握这一重要技能,提升 Java 编程能力。适合初学者和进阶开发者阅读。
104 61
|
14天前
|
JSON 自然语言处理 数据管理
阿里云百炼产品月刊【2024年9月】
阿里云百炼产品月刊【2024年9月】,涵盖本月产品和功能发布、活动,应用实践等内容,帮助您快速了解阿里云百炼产品的最新动态。
阿里云百炼产品月刊【2024年9月】