LangServe如何革新LLM应用部署?

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: LangServe是一款专为LLM部署和管理设计的框架,旨在简化AI服务的开发和运维。它支持多种AI模型,提供高效的推理缓存、安全的访问控制、实时监控和简洁的API接口,帮助开发者从零到一实现LLM应用的快速部署。文中详细介绍了LangServe的功能特点、REST API开发流程及客户端调用测试。

0 前言

随LLM技术演进,AI应用开发部署越来越复杂。LangServe应运而生,旨在简化AI服务部署和运维的框架。专为LLM部署和管理而设计;本文旨在讲解LangServe的功能特点和实践运用。

1 概述

LangServe 提供一整套将LLM部署成产品服务的解决方案。可将LLM应用链接入常见Python Web框架(如FastAPI、Pydantic、uvloop、asyncio),进而生成一套RESTful API。LangServe减少开发人员的运维部署任务,使他们可以更专注于LLM应用开发。不仅简化从开发到生产的过渡,还确保服务的高性能和安全性。它提供了包括模型管理器、请求处理器、推理引擎、结果缓存、监控与日志记录以及API网关等各类组件。LangServe的目标是让开发者能够轻松集成、部署和管理AI模型,从零到一无缝地实现LLM应用从原型到产品的过渡。

仓库地址:github.com/langchain-a…

2 功能

多模型支持

LangServe支持部署多种类型的AI模型,包括文本生成、图像识别、语音处理等,开发人员能够按需切换。

高效推理缓存

为了提高响应速度和节省计算资源,LangServe包含了一个高效的结果缓存系统,可以智能地存储和管理热点数据。

安全访问控制

通过角色和策略的管理,LangServe提供了灵活的访问控制机制,确保了服务的安全性和数据的隐私性。

实时监控与日志

内置的监控系统可以实时跟踪服务的运行状态,详尽的日志记录有助于问题的调试和分析。

简洁易用的API接口

LangServe的API设计简洁直观,易于理解和使用,大大减少了开发者的学习成本。

3 REST API 开发

1 环境准备

安装依赖:

pip install "langserve[all]"

该命令包含了服务端和客户端的安装。

设置环境变量OPENAI_API_KEY=<your valid openai api key>

2 代码开发

简单的翻译接口。除了LangServe,还引入Web框架FastAPI和Web服务器uvicorn:

python

代码解读

复制代码

from fastapi import FastAPI
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    HumanMessagePromptTemplate,
)
from langchain_openai import ChatOpenAI
from langserve import add_routes

# FastAPI是一个基于Python的Web框架,用于构建高性能、可扩展的API
app = FastAPI(
    title="LangChain Server",
    version="1.0",
    description="A simple API server using Langchain's Runnable interfaces",
)

# 接口1
add_routes(
    app,
    ChatOpenAI(),
    path="/openai",
)

# 接口2
system_message_prompt = SystemMessagePromptTemplate.from_template("""
    You are a helpful assistant that translates {input_language} to {output_language}.
""")
human_message_prompt = HumanMessagePromptTemplate.from_template("{text}")

chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])

add_routes(
    app,
    chat_prompt | ChatOpenAI(),
    path="/translate",
)

if __name__ == "__main__":
    import uvicorn
    # Python的Web服务器
    uvicorn.run(app, host="localhost", port=9999)

3 启动

bash

代码解读

复制代码

python app.py

4 Postman调用测试

通常可直接访问 http://localhost:9999/docs,在浏览器在线的接口文档中找到对应的接口,并直接在网页上进行测试。目前由于新的Pydantic版本存在兼容性问题,无法生成OpenAPI文档,因此暂用Postman进行接口测试。

5 客户端调用测试

在后台开发LangServe客户端,进行远程调用REST API。

python

代码解读

复制代码

from langchain.prompts.chat import ChatPromptTemplate
from langserve import RemoteRunnable

# 配置远程接口
openai_llm = RemoteRunnable("http://localhost:9999/openai/")

# 创建提示词
prompt = ChatPromptTemplate.from_messages(
    [
        ("system", "你是一名资深的AI大模型专家"),
        ("human", "请帮忙讲解一下,有哪些常用的通用开源大模型,中外各自罗列5个"),
    ]
).format_messages()

# LLM接口调用
openai_llm.invoke(prompt)

# 输出:
# AIMessage(content='当谈论通用开源大模型时,常常会提到自然语言处理(NLP)领域中的预训练模型。以下是中外各自常用的5个通用开源大模型:
# **国外:**
# 1. BERT(Bidirectional Encoder Representations from Transformers):由Google开发,是一种基于Transformer架构的预训练模型,用于各种NLP任务。
# 2. GPT-3(Generative Pre-trained Transformer 3):由OpenAI发布,是一个非常大的语言生成模型,可以用于文本生成等任务。
# 3. RoBERTa(A Robustly Optimized BERT Approach):由Facebook发布的预训练模型,基于BERT进行了一些优化,用于提高性能。
# 4. T5(Text-to-Text Transfer Transformer):由Google发布,是一个通用的文本生成模型,可以应用于多种NLP任务。
# 5. XLNet:由谷歌Brain团队发布,是一种自回归预训练模型,结合Transformer-XL和自回归方法。
# **国内:**
# 6. ERNIE(Enhanced Representation through kNowledge Integration):由百度发布,是一种基于Transformer架构的多语言预训练模型,融合了知识融合的方法。
# 7. GPT-2(Generative Pre-trained Transformer 2):由哈工大讯飞联合实验室发布,是一个类似于GPT-3的语言生成模型,用于文本生成等任务。
# 8. HFL/THU Bert:由清华大学自然语言处理与社会人文计算实验室发布,是一个BERT的中文预训练模型,适用于中文NLP任务。
# 9. RoFormer:由华为发布,是一种优化的中文预训练模型,用于中文NLP任务。
# 10. PaddleNLP:由百度发布,是一个NLP模型库,提供了多种预训练模型,包括BERT、ERNIE等,适用于各种NLP任务。')

总结

LangServe作为一款专注于AI模型部署和运维的平台,通过其精心设计的架构和丰富的功能集合,显著降低了AI项目的门槛,提升了开发效率和服务稳定性。无论是初创公司还是大型企业,LangServe都提供了一个可靠的解决方案,以应对AI领域中的挑战和机遇。随着AI技术的不断进步,LangServe将继续在AI服务的革新和发展中扮演关键角色。


原文地址:https://juejin.cn/post/7425193631584092212

相关文章
|
4月前
|
人工智能 缓存 运维
LangServe如何革新LLM应用部署?
【10月更文挑战第3天】
127 1
|
人工智能 关系型数据库 Serverless
体验基于 LLM 构建AI知识库问答应用部署
基于NAS、RDS PostgreSQL部署AI大语言知识库
405 26
|
4月前
|
前端开发 机器人 API
前端大模型入门(一):用 js+langchain 构建基于 LLM 的应用
本文介绍了大语言模型(LLM)的HTTP API流式调用机制及其在前端的实现方法。通过流式调用,服务器可以逐步发送生成的文本内容,前端则实时处理并展示这些数据块,从而提升用户体验和实时性。文章详细讲解了如何使用`fetch`发起流式请求、处理响应流数据、逐步更新界面、处理中断和错误,以及优化用户交互。流式调用特别适用于聊天机器人、搜索建议等应用场景,能够显著减少用户的等待时间,增强交互性。
1157 2
|
18天前
|
机器学习/深度学习 存储 人工智能
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
MNN-LLM App 是阿里巴巴基于 MNN-LLM 框架开发的 Android 应用,支持多模态交互、多种主流模型选择、离线运行及性能优化。
1181 14
MNN-LLM App:在手机上离线运行大模型,阿里巴巴开源基于 MNN-LLM 框架开发的手机 AI 助手应用
|
4月前
|
机器学习/深度学习 人工智能 运维
企业内训|LLM大模型在服务器和IT网络运维中的应用-某日企IT运维部门
本课程是为某在华日资企业集团的IT运维部门专门定制开发的企业培训课程,本课程旨在深入探讨大型语言模型(LLM)在服务器及IT网络运维中的应用,结合当前技术趋势与行业需求,帮助学员掌握LLM如何为运维工作赋能。通过系统的理论讲解与实践操作,学员将了解LLM的基本知识、模型架构及其在实际运维场景中的应用,如日志分析、故障诊断、网络安全与性能优化等。
140 2
|
4月前
|
机器学习/深度学习 数据采集 人工智能
文档智能 & RAG 让AI大模型更懂业务 —— 阿里云LLM知识库解决方案评测
随着数字化转型的深入,企业对文档管理和知识提取的需求日益增长。阿里云推出的文档智能 & RAG(Retrieval-Augmented Generation)解决方案,通过高效的内容清洗、向量化处理、精准的问答召回和灵活的Prompt设计,帮助企业构建强大的LLM知识库,显著提升企业级文档管理的效率和准确性。
|
1月前
|
自然语言处理
Nature:人类亲吻难题彻底难倒LLM,所有大模型全部失败!LLM根本不会推理,只是工具
近期,《自然》杂志发表的研究显示,所有大型语言模型(LLM)在解释特定情境下人类亲吻行为时均失败。尽管LLM在语言处理和文本生成上表现出色,但在理解和推理复杂人类行为方面存在显著限制,表明其缺乏对人类情感、社会及文化背景的深入理解。专家认为LLM更像是工具而非智能体,虽在客户服务、内容创作等领域有价值,但在复杂推理和理解方面仍显不足。
87 37
|
1月前
|
Linux Docker 异构计算
基于Dify +Ollama+ Qwen2 完成本地 LLM 大模型应用实战
尼恩,一位拥有40年经验的老架构师,通过其丰富的行业经验和深入的技术研究,为读者提供了一套系统化、全面化的LLM大模型学习圣经。这套学习资料不仅帮助许多从业者成功转型,还助力多位工程师获得了高薪工作机会。
|
30天前
|
人工智能 API Android开发
LLM大模型最新消息2025.01
本文介绍了多个大模型训练和部署工具及教程。使用unsloth支持llama3,显存占用约8G;GPT4ALL加载训练好的大模型;llama.cpp进行4bit量化后可用CPU运行。MAID手机App和MLC软件可在安卓设备上本地运行大模型或调用API。FASTGPT用于客制化大模型和AI私有化客服。相关教程链接已提供。
139 12
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深挖大模型幻觉!哈佛大学最新报告:LLM等价于众包,只是在输出网络共识
大型语言模型(LLM)如ChatGPT正改变人机交互,但在生成看似真实的错误信息方面存在“幻觉”问题。这种现象源于LLM依赖统计概率而非语义理解,导致在处理争议或冷门话题时易出错。研究显示,LLM的准确性高度依赖于训练数据的质量和数量。尽管如此,LLM仍具巨大潜力,需持续优化并保持批判性使用。
84 12

热门文章

最新文章