Matplotlib 教程 之 Matplotlib 中文显示 2

简介: Matplotlib 中文显示教程,介绍如何通过设置 Matplotlib 字体参数或下载支持中文的字体库来实现中文显示。适用于 Windows、Linux 和 macOS 系统,确保图表中文本正确呈现。

Matplotlib 教程 之 Matplotlib 中文显示 2

Matplotlib 中文显示

Matplotlib 中文显示不是特别友好,要在 Matplotlib 中显示中文,我们可以通过两个方法:

设置 Matplotlib 的字体参数。
下载使用支持中文的字体库。

Matplotlib 的字体参数

我们可以先获取系统的字体库列表:

实例
from matplotlib import pyplot as plt
import matplotlib
a=sorted([f.name for f in matplotlib.font_manager.fontManager.ttflist])

for i in a:
print(i)

输出结果类似如下:

...
Heiti TC
Helvetica
Helvetica Neue
Herculanum
Hiragino Maru Gothic Pro
Hiragino Mincho ProN
Hiragino Sans
Hiragino Sans GB
Hoefler Text
...

以上代码输出 font_manager 的 ttflist 中所有注册的名字,找一个看中文字体例如:STFangsong(仿宋)、Heiti TC(黑体),然后添加以下代码即可。

对于 Windows:

plt.rcParams['font.family'] = 'SimHei' # 替换为你选择的字体
在 Windows 系统上,选择 SimHei(黑体)或其他中文字体,并将其设置为 Matplotlib 的默认字体。

对于 Linux:

plt.rcParams['font.family'] = 'WenQuanYi Micro Hei' # 替换为你选择的字体
在Linux系统上,使用 fc-list 命令查看已安装的字体,选择一个中文字体,并将其设置为 Matplotlib 的默认字体。

对于 macOS:

plt.rcParams['font.family'] = 'Heiti TC' # 替换为你选择的字体
通过设置 plt.rcParams['font.family'],你告诉 Matplotlib 使用选择的字体来渲染文本,从而在图表中正确显示中文。

这样,你就能够在 Matplotlib 图表中使用系统支持的中文字体了。

目录
相关文章
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 10
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。Seaborn 支持多种图表类型,如散点图、折线图、柱状图、热图等,并特别强调视觉效果。例如,使用 `sns.violinplot()` 可以轻松绘制展示数据分布的小提琴图。
32 1
|
2月前
|
数据可视化 数据挖掘 Python
Matplotlib 教程 之 Seaborn 教程 8
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了简洁的高级接口和美观的默认样式,支持多种图表类型,如散点图、折线图、柱状图、热图等,特别适合于数据分析和展示。例如,使用 `sns.boxplot()` 可以轻松绘制箱线图,展示数据的分布情况。
37 3
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 9
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。本文介绍了 Seaborn 的主要功能和绘图函数,包括热图 `sns.heatmap()` 的使用方法和示例代码。
20 1
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 2
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制,提供高级接口和美观的默认主题,支持散点图、折线图等多种图表类型,安装简便,可通过 `pip install seaborn` 完成。Seaborn 设计注重美观与易用性,内置多种主题如 darkgrid、whitegrid 等,便于用户快速生成高质量的统计图表。
21 3
|
2月前
|
Python
Matplotlib 教程 之 Matplotlib imread() 方法 4
Matplotlib 的 `imread()` 方法用于从文件中读取图像数据,返回一个包含图像信息的 numpy 数组。该方法支持灰度和彩色图像,可通过调整数组元素来修改图像颜色。示例中展示了如何将图像中的绿色和蓝色通道置零,从而显示红色图像。
18 1
|
2月前
|
Python
Matplotlib 教程 之 Matplotlib imsave() 方法 2
Matplotlib 教程 之 Matplotlib imsave() 方法 2
27 1
|
2月前
|
机器学习/深度学习 定位技术 Python
Matplotlib 教程 之 Matplotlib imshow() 方法 6
Matplotlib `imshow()` 方法教程:详解如何使用 `imshow()` 函数显示二维图像,包括灰度图、彩色图及不同插值方法的应用示例。通过调整参数如颜色映射(cmap)、插值方法(interpolation)等,实现图像的不同视觉效果。
37 2
|
2月前
|
定位技术 Python
Matplotlib 教程 之 Matplotlib imshow() 方法 1
《Matplotlib imshow() 方法教程》:本文介绍 Matplotlib 库中的 imshow() 函数,该函数常用于绘制二维灰度或彩色图像,也可用于展示矩阵、热力图等。文中详细解释了其语法及参数,例如颜色映射(cmap)、归一化(norm)等,并通过实例演示了如何使用 imshow() 显示灰度图像。
29 2
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 直方图 2
使用 Matplotlib 的 `hist()` 方法绘制直方图,通过实例展示了如何比较多组数据的分布。`hist()` 方法属于 Matplotlib 的 pyplot 子库,能有效展示数据分布特性,如中心趋势和偏态。示例中通过生成三组正态分布的随机数据并设置参数(如 bins、alpha 和 label),实现了可视化比较。
36 3
|
2月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 饼图 5
使用 Matplotlib 的 `pie()` 方法绘制饼图,通过参数设置(如颜色、标签和比例等),轻松展示各类别占比。示例代码展示了如何创建一个具有突出部分的彩色饼图并显示百分比。`pie()` 方法支持多种参数定制,包括阴影、旋转角度及文本属性等。
44 3