NVIDIA Triton系列10-模型并发执行

简介: NVIDIA Triton服务器支持模型并发执行,通过在单个或多个GPU上同时运行多个模型实例,提高计算资源利用率和性能。配置`instance_group`可调整每个模型的并发实例数,优化推理效率。此外,通过设置资源限制和优先级,确保在有限的计算资源下实现高效的任务调度。

NVIDIA Triton系列10-模型并发执行

B站:肆十二-的个人空间-肆十二-个人主页-哔哩哔哩视频 (bilibili.com)

博客:肆十二-CSDN博客

问答:(10 封私信 / 72 条消息) 肆十二 - 知乎 (zhihu.com)

前面已经做好了每个推理模型的基础配置,基本上就能正常让 Triton 服务器使用这些独立模型进行推理。接下来的重点,就是要让设备的计算资源尽可能地充分使用,首先第一件事情就是模型并发执行(concurrent model execution)的调试,这是提升 Triton 服务器性能的最基本任务。

Triton 服务器支持的模型并发能力,包括一个模型并发多个推理实例,以及多个模型的多个并发实例。至于能并发多少实例?就需要根据系统上的硬件配置,Triton 支持纯 CPU 以及多 GPU 的计算环境。

GPU 是能够同时执行多个工作负载的计算引擎,Triton 推理服务器通过在 GPU上同时运行多个模型,最大限度地提高性能并减少端到端延迟,这些模型可以完全相同也可以是不同框架的不同模型,显存大小是唯一限制并发运行模型数量的因素。

下图显示了两个计算模型 compute model 0 与 compute model 1 的示例,假设 Triton 服务器当前处于等待状态,当 request 0 与 request 1 两个请求同时到达时,Triton 会立即将这两个请求调度到 GPU 上(下图左),开始并发处理这两个模型的推理计算。

img

默认情况下,Triton 指定系统中的每个可用 GPU 为每个模型提供一个实例,如果同一模型的多个请求同时到达,Triton 将通过在 GPU 上一次只调度一个请求来串行化它们的执行(上图中)。这样的方式在管理上是最轻松的,但是执行效率并不好,因为计算性能并未被充分调用。

Triton 提供了一个 “instance_group” 的模型配置选项,通过在模型配置中使用这个字段,可以更改模型的执行实例数,调整每个模型的并发执行数量。

上图右就是在 model 1 配置文件中,添加 “instance_group” 配置,并且设置 “count: 3” 的参数,这样就允许一个 GPU 上可以并发三个实例的模型计算,如果用户端发出超过 3 个推理请求时,则第 4 个 model 1 推理请求就必须等到前三个实例中的任一个执行完之后,才能开始执行。

Triton 可以提供一个模型的多个实例,从而可以同时处理该模型的多条推理请求。模型配置 ModelInstanceGroup 属性用于指定应可用的执行实例的数量以及应为这些实例使用的计算资源。接下来就看看几个标准用法:

1. 单 CPU 或 GPU 单实例

未添加任何 instance_group 参数时,表示这个模型使用默认的配置,这时该模型可以在系统中可用的每个 GPU 中创建单个执行实例。如果用户端提出多个请求时,就会在 GPU 设备上按照串行方式执行计算,如同上图中 compute model 1 的状态。

2. 单 CPU 或 GPU 并发多实例

实例组设置可用于在每个 GPU 上或仅在某些 GPU 上放置模型的多个执行实例。例如,以下配置将在每个系统 GPU 上放置模型的两个执行实例。如果要让模型在一个 GPU 上执行多个并行实例,就将以下的内容写入模型配置文件内,这里配置的是 2 个并发实例:

instance_group [ { count: 2 kind: KIND_GPU } ]

如果将上面配置的计算设备配置为 “kind:KIND_CPU” ,就是指定在 CPU 可以并发两个推理计算。

3. 多 CPU 或 GPU 并发多实例

如果设备上有多个计算设备,不管是 CPU 或 GPU,都可以使用以下配置方式,为模型配置多个并发推理实例:

instance_group [ { count: 1 kind: KIND_GPU gpus: [ 0 ] }, { count: 2 kind: KIND_GPU gpus: [ 1, 2 ] } ]

这里的内容,表示 Triton 服务器至少启动 3 个 GPU 计算设备,这个推理模型在编号为 0 的 GPU 上启动 1 个并发实例,在编号为 1 与 2 的 GPU 上可以同时启动 2 个并发实例,以此类推。

以上是 instance_group 的基础配置内容,如果要对每个 GPU 设备的计算资源进行更深层的配置,还可以配合一个“比例限制器配置(Rate Limiter Configuration)”参数设置,对于执行实例进行资源的限制,以便于在不同实例直接取得计算平衡。

这个比例限制器的配置,主要有以下两部分:

资源(Reousrces)限制:

这个资源主要指的是 GPU 的显存调用,因为数据在 CPU 与 GPU 之间的交换传输,经常在整个计算环节中造成很大的影响,如果当我们需要对同一组数据进行不同的计算,或者计算过程中有流水线前后关系的话,那么将这些需要重复使用的数据保留在 GPU 显存上,就能非常有效减少数据传输次数,进而提升计算效率。

因此我们可以对模型实例提出限制,只有当系统闲置资源能满足资源需求时,才进行这个推理模型的计算。如果模型配置里没有提供任何资源限制的需求,那么 Triton 服务器就认定这个模型实例的执行并不需要任何资源,并将在模型实例可用时立即开始执行。

这个配置项里有三个参数内容:

(1)“name”字段:资源名称;

(2)“count”字段:组中模型实例需要运行的资源副本数;

(3)“global”字段:指定资源是按设备还是在系统中全局共享。

下面是一个简单的模型配置内容的 instance_group 参数组:

instance_group [ { count: 2 kind: KIND_GPU gpus: [ 0 ] rate_limiter { resources [ { name: "R1" count: 4 } ] } }, { count: 4 kind: KIND_GPU gpus: [ 1, 2 ] rate_limiter { resources [ { name: "R2" global: True count: 2 } ] } } ]

第 1 组配置:可并发执行数量为 2,指定使用 gpu[0] 设备,需要名为 “R1” 的计算资源,其内容是需要 2 份设备内存的副本;

第 2 组配置:可并发执行数量为 4,指定使用 gpu[1, 2] 两个设备,需要名为 “R2” 的计算资源,其内容是需要 4 份全局共享内存的副本,

这里面的并发数量与资源配置数量并不存在线性关系,开发人员必须根据模型所需要数据的张量尺度,以及 GPU 卡显存大小去进行调配。

Triton 允许我们指定要为推理提供的每个模型的副本数量,默认情况下会获得每个模型的一个副本,但可以使用 instance_group 在模型配置中指定任意数量的实例。通常拥有一个模型的两个实例会提高性能,因为它允许 CPU 与 GPU 之间的内存传输操作与推理计算重叠。多个实例还通过允许在 GPU 上并发更多推理工作来提高 GPU 利用率。

优先级(Priority)设置:

因为计算资源是有限的,因此也可以在资源配置是对其进行优先级的配置,如此也会影响实例进行的先后顺序。下面是一个简单的优先级配置示范:

instance_group [ { count: 1 kind: KIND_GPU gpus: [ 0, 1, 2 ] rate_limiter { resources [ { name: "R1" count: 4 }, { name: "R2" global: True count: 2 } ] priority: 2 } } ]

上面配置组的 3 个模型实例,每个设备(0、1和2)上执行一个,每个实例需要 4 个 “R1” 和 2 个具有全局资源的 “R2” 资源才能执行,并将比例限制器的优先级设置为 2。

这三个实例之间不会争夺 “R1” 资源,因为 “R1” 对于它们自己的设备是本地的,但是会争夺 “R2” 资源,因为它被指定为全局资源,这意味着 “R2” 在整个系统中共享。虽然这些实例之间不争 “R1”,但它们将与其他模型实例争夺 “R1“,这些模型实例在资源需求中包含 “R1” 并与它们在同一设备上运行。

这是对所有模型的所有实例进行优先级排序,优先级 2 的实例将被赋予优先级 1 的实例 1/2 的调度机会数。

以上是关于 Triton 服务器“模型并发执行”的基础内容,后面还有更多关于调度器(scheduler)与批量处理器(batcher)的配合内容,能更进一步地协助开发人员调试系统的总体性能。

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
目录
打赏
0
0
0
0
4
分享
相关文章
NVIDIA Triton系列01-应用概论
NVIDIA Triton推理服务器为AI服务类应用提供全面解决方案,支持多种处理器、框架及模型类型,优化部署与性能,适用于在线推荐、图像分类等场景。文中介绍了Triton在微软Teams、微信视觉应用及腾讯PCG在线推理中的成功案例,展示其在提升性能、降低成本方面的显著效果。
129 0
NVIDIA Triton系列01-应用概论
一篇就够:高性能推理引擎理论与实践 (TensorRT)
本文分享了关于 NVIDIA 推出的高性能的深度学习推理引擎 TensorRT 的背后理论知识和实践操作指南。
12026 9
一篇就够:高性能推理引擎理论与实践 (TensorRT)
使用MMDetection进行目标检测
本文介绍了如何使用MMDetection进行目标检测。首先需按官方文档安装MMDetection,不熟悉的同学可参考提供的教程链接。安装完成后,只需准备模型配置文件、模型文件及待检测的图片或视频。示例代码展示了如何加载模型并进行图像检测,最后通过可视化展示检测结果,包括类别和置信度。
149 1
使用MMDetection进行目标检测
NVIDIA Triton系列03-开发资源说明
NVIDIA Triton 推理服务器是用于高效部署机器学习模型的开源工具。本文介绍了初学者如何通过官方文档和 GitHub 开源仓库获取开发资源,包括快速启动指南、生产文档、示例和反馈渠道。特别强调了核心仓库中的六个重要部分,涵盖服务器部署、核心功能、后端支持、客户端接口、模型分析和模型导航工具。这些资源有助于初学者全面了解和掌握 Triton 项目。
111 0
NVIDIA Triton系列03-开发资源说明
NVIDIA Triton系列02-功能与架构简介
本文介绍了NVIDIA Triton推理服务器的功能与架构,强调其不仅适用于大型服务类应用,还能广泛应用于各类推理场景。Triton支持多种模型格式、查询类型和部署方式,具备高效的模型管理和优化能力,确保高性能和系统稳定性。文章详细解析了Triton的主从架构,包括模型仓库、客户端应用、通信协议和推理服务器的核心功能模块。
182 1
NVIDIA Triton系列02-功能与架构简介
大语言模型推理提速,TensorRT-LLM 高性能推理实践
大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型,本文主要讲述TensorRT-LLM利用量化、In-Flight Batching、Attention、Graph Rewriting提升 LLM 模型推理效率。
101952 2
92页的llama 3.1技术报告,我替你们啃下来了
作者花了半个月时间,认真读完了llama 3.1技术报告,并总结成本文,希望能帮到对这个感兴趣的小伙伴们。
92页的llama 3.1技术报告,我替你们啃下来了
FastAPI数据库操作秘籍:如何通过高效且安全的数据库访问策略,使你的Web应用飞速运转并保持数据完整性?
【8月更文挑战第31天】在构建现代Web应用时,数据库操作至关重要。FastAPI不仅简化了API创建,还提供了高效数据库交互的方法。本文探讨如何在FastAPI中实现快速、安全的数据处理。FastAPI支持多种数据库,如SQLite、PostgreSQL和MySQL;选择合适的数据库可显著提升性能。通过安装相应驱动并配置连接参数,结合ORM库(如Tortoise-ORM或SQLAlchemy),可以简化数据库操作。使用索引、批量操作及异步处理等最佳实践可进一步提高效率。同时,确保使用参数化查询防止SQL注入,并从环境变量中读取敏感信息以增强安全性。
355 1

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等