心电图学习任务四——建模与调参

简介: 心电图学习任务四——建模与调参

一、建模与调参

在本节心电图预测中,是关于时间序列的学习,我们在之前了解数据模型之后,了解到这是一个关于回归问题的学习,我们要拟合出回归的效果

回归模型我们一直是机器学习中很重到的一部分,所以我们要大概的了解回归模型:


在学习地址中能看到回归模型简单学习,而且对集成学习,调参都是有很好的说明的。在这里就不在讲述了,我只添加了一些代码注释。

代码部分:

#导入相关的库
import pandas as pd
import numpy as np
from sklearn.metrics import f1_score #sklarn中混淆矩阵F1score分数
import os
import seaborn as sns
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")

节约资源函数啊,能节省一点是一点

# 这是一个减少内存开销的函数,每一组数据的类型确定后,,将一些不必要的内存给去掉,比如INT64的整形,
#我们决定没有必要,就可以将其中的数据使用astype变成int32
def reduce_mem_usage(df):
    start_mem = df.memory_usage().sum() / 1024**2 
    print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
    
    for col in df.columns:
        col_type = df[col].dtype
        
        if col_type != object:
            c_min = df[col].min()
            c_max = df[col].max()
            if str(col_type)[:3] == 'int':
                if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
                    df[col] = df[col].astype(np.int8)
                elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
                    df[col] = df[col].astype(np.int16)
                elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
                    df[col] = df[col].astype(np.int32)
                elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
                    df[col] = df[col].astype(np.int64)  
            else:
                if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
                    df[col] = df[col].astype(np.float16)
                elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
                    df[col] = df[col].astype(np.float32)
                else:
                    df[col] = df[col].astype(np.float64)
        else:
            df[col] = df[col].astype('category')
    end_mem = df.memory_usage().sum() / 1024**2 
    print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
    print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
    
    return df
'运行
运行
# 读取数据
data = pd.read_csv('train.csv')
# 简单预处理
data_list = []
for items in data.values:
    data_list.append([items[0]] + [float(i) for i in items[1].split(',')] + [items[2]])
data = pd.DataFrame(np.array(data_list))
data.columns = ['id'] + ['s_'+str(i) for i in range(len(data_list[0])-2)] + ['label']
data = reduce_mem_usage(data)
Memory usage of dataframe is 157.93 MB
Memory usage after optimization is: 39.67 MB
Decreased by 74.9%

使用函数节省了74.9%的内存

from sklearn.model_selection import KFold
# 分离数据集,方便进行交叉验证
X_train = data.drop(['id','label'], axis=1)#删除了ID与Label
y_train = data['label']
# 5折交叉验证
folds = 5
seed = 2021
kf = KFold(n_splits=folds, shuffle=True, random_state=seed)

自定义了f1score分数

F1分数(F1-score)是分类问题的一个衡量指标。一些多分类问题的机器学习竞赛,常常将F1-score作为最终测评的方法。它是精确率和召回率的调和平均数,最大为1,最小为0。

def f1_score_vali(preds, data_vali):
    labels = data_vali.get_label()
    preds = np.argmax(preds.reshape(4, -1), axis=0)
    score_vali = f1_score(y_true=labels, y_pred=preds, average='macro')
    return 'f1_score', score_vali, True
'运行
运行
"""对训练集数据进行划分,分成训练集和验证集,
并进行相应的操作
test_size=0.2将数据切分成二八两份,作为验证集与训练集
"""
from sklearn.model_selection import train_test_split
import lightgbm as lgb
# 数据集划分
X_train_split, X_val, y_train_split, y_val = train_test_split(X_train, y_train, test_size=0.2)
train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
valid_matrix = lgb.Dataset(X_val, label=y_val)
params = {
    "learning_rate": 0.1,#学习率
    "boosting": 'gbdt',  
    "lambda_l2": 0.1,
    "max_depth": -1,#最大树深度
    "num_leaves": 128,#最大树
    "bagging_fraction": 0.8,
    "feature_fraction": 0.8,
    "metric": None,
    "objective": "multiclass",
    "num_class": 4,
    "nthread": 10,
    "verbose": -1,
}
"""使用训练集数据进行模型训练"""
model = lgb.train(params, 
                  train_set=train_matrix, 
                  valid_sets=valid_matrix, 
                  num_boost_round=2000, 
                  verbose_eval=50, 
                  early_stopping_rounds=200,
                  feval=f1_score_vali)
Training until validation scores don't improve for 200 rounds
[50]  valid_0's multi_logloss: 0.0494395  valid_0's f1_score: 0.958305
[100] valid_0's multi_logloss: 0.0449485  valid_0's f1_score: 0.965319
[150] valid_0's multi_logloss: 0.0464121  valid_0's f1_score: 0.96852
[200] valid_0's multi_logloss: 0.0481486  valid_0's f1_score: 0.969897
[250] valid_0's multi_logloss: 0.0494213  valid_0's f1_score: 0.969932
Early stopping, best iteration is:
[85]  valid_0's multi_logloss: 0.044785 valid_0's f1_score: 0.963145
val_pre_lgb = model.predict(X_val, num_iteration=model.best_iteration)
preds = np.argmax(val_pre_lgb, axis=1)
score = f1_score(y_true=y_val, y_pred=preds, average='macro')
print('未调参前lightgbm单模型在验证集上的f1:{}'.format(score))
未调参前lightgbm单模型在验证集上的f1:0.9631447591337778
"""使用lightgbm 5折交叉验证进行建模预测"""
cv_scores = []
for i, (train_index, valid_index) in enumerate(kf.split(X_train, y_train)):
    print('************************************ {} ************************************'.format(str(i+1)))
    X_train_split, y_train_split, X_val, y_val = X_train.iloc[train_index], y_train[train_index], X_train.iloc[valid_index], y_train[valid_index]
    
    train_matrix = lgb.Dataset(X_train_split, label=y_train_split)
    valid_matrix = lgb.Dataset(X_val, label=y_val)
    params = {
                "learning_rate": 0.1,
                "boosting": 'gbdt',  
                "lambda_l2": 0.1,
                "max_depth": -1,
                "num_leaves": 128,
                "bagging_fraction": 0.8,
                "feature_fraction": 0.8,
                "metric": None,
                "objective": "multiclass",
                "num_class": 4,
                "nthread": 10,
                "verbose": -1,
            }
    
    model = lgb.train(params, 
                      train_set=train_matrix, 
                      valid_sets=valid_matrix, 
                      num_boost_round=2000, 
                      verbose_eval=100, 
                      early_stopping_rounds=200,
                      feval=f1_score_vali)
    
    val_pred = model.predict(X_val, num_iteration=model.best_iteration)
    
    val_pred = np.argmax(val_pred, axis=1)
    cv_scores.append(f1_score(y_true=y_val, y_pred=val_pred, average='macro'))
    print(cv_scores)
print("lgb_scotrainre_list:{}".format(cv_scores))
print("lgb_score_mean:{}".format(np.mean(cv_scores)))
print("lgb_score_std:{}".format(np.std(cv_scores)))
************************************ 1 ************************************
Training until validation scores don't improve for 200 rounds
[100] valid_0's multi_logloss: 0.0408155  valid_0's f1_score: 0.966797
[200] valid_0's multi_logloss: 0.0437957  valid_0's f1_score: 0.971239
Early stopping, best iteration is:
[96]  valid_0's multi_logloss: 0.0406453  valid_0's f1_score: 0.967452
[0.9674515729721614]
************************************ 2 ************************************
Training until validation scores don't improve for 200 rounds
[100] valid_0's multi_logloss: 0.0472933  valid_0's f1_score: 0.965828
[200] valid_0's multi_logloss: 0.0514952  valid_0's f1_score: 0.968138
Early stopping, best iteration is:
[87]  valid_0's multi_logloss: 0.0467472  valid_0's f1_score: 0.96567
[0.9674515729721614, 0.9656700872844327]
************************************ 3 ************************************
Training until validation scores don't improve for 200 rounds
[100] valid_0's multi_logloss: 0.0378154  valid_0's f1_score: 0.971004
[200] valid_0's multi_logloss: 0.0405053  valid_0's f1_score: 0.973736
Early stopping, best iteration is:
[93]  valid_0's multi_logloss: 0.037734 valid_0's f1_score: 0.970004
[0.9674515729721614, 0.9656700872844327, 0.9700043639844769]
************************************ 4 ************************************
Training until validation scores don't improve for 200 rounds
[100] valid_0's multi_logloss: 0.0495142  valid_0's f1_score: 0.967106
[200] valid_0's multi_logloss: 0.0542324  valid_0's f1_score: 0.969746
Early stopping, best iteration is:
[84]  valid_0's multi_logloss: 0.0490886  valid_0's f1_score: 0.965566
[0.9674515729721614, 0.9656700872844327, 0.9700043639844769, 0.9655663272378014]
************************************ 5 ************************************
Training until validation scores don't improve for 200 rounds
[100] valid_0's multi_logloss: 0.0412544  valid_0's f1_score: 0.964054
[200] valid_0's multi_logloss: 0.0443025  valid_0's f1_score: 0.965507
Early stopping, best iteration is:
[96]  valid_0's multi_logloss: 0.0411855  valid_0's f1_score: 0.963114
[0.9674515729721614, 0.9656700872844327, 0.9700043639844769, 0.9655663272378014, 0.9631137190307674]
lgb_scotrainre_list:[0.9674515729721614, 0.9656700872844327, 0.9700043639844769, 0.9655663272378014, 0.9631137190307674]
lgb_score_mean:0.9663612141019279
lgb_score_std:0.0022854824074775683

二、调参

2.1、贪心调参

先使用当前对模型影响最大的参数进行调优,达到当前参数下的模型最优化,再使用对模型影响次之的参数进行调优,如此下去,直到所有的参数调整完毕。

这个方法的缺点就是可能会调到局部最优而不是全局最优,但是只需要一步一步的进行参数最优化调试即可,容易理解。

from sklearn.model_selection import cross_val_score
from lightgbm.sklearn import LGBMRegressor# 调objective
best_obj = dict()
objective=["regression"]
for obj in objective:
    model = LGBMRegressor(objective=obj)
    """预测并计算roc的相关指标"""
    score = cross_val_score(model, X_train, y_train, cv=5, scoring='f1').mean()
    best_obj[obj] = score
# num_leaves
best_leaves = dict()
for leaves in num_leaves:
    model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves)
    """预测并计算roc的相关指标"""
    score = cross_val_score(model, X_train, y_train, cv=5, scoring='f1').mean()
    best_leaves[leaves] = score
# max_depth
best_depth = dict()
for depth in max_depth:
    model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0],
                          num_leaves=min(best_leaves.items(), key=lambda x:x[1])[0],
                          max_depth=depth)
    """预测并计算roc的相关指标"""
    score = cross_val_score(model, X_train, y_train, cv=5, scoring='f1').mean()
    best_depth[depth] = score
"""
可依次将模型的参数通过上面的方式进行调整优化,并且通过可视化观察在每一个最优参数下模型的得分情况
"""  

2.2、 网格搜索

sklearn 提供GridSearchCV用于进行网格搜索,只需要把模型的参数输进去,就能给出最优化的结果和参数。相比起贪心调参,网格搜索的结果会更优,但是网格搜索只适合于小数据集,一旦数据的量级上去了,很难得出结果。(比较暴力,浪费时间)

网格搜索的思想非常简单,比如你有2个超参数需要去选择,那你就把所有的超参数选择列出来分别做排列组合。然后针对每组超参数分别建立一个模型,然后选择测试误差最小的那组超参数。换句话说,我们需要从超参数空间中寻找最优的超参数,很像一个网格中找到一个最优的节点,因此叫网格搜索。

"""通过网格搜索确定最优参数"""
from sklearn.model_selection import GridSearchCV
def get_best_cv_params(learning_rate=0.1, n_estimators=581, num_leaves=31, max_depth=-1, bagging_fraction=1.0, 
                       feature_fraction=1.0, bagging_freq=0, min_data_in_leaf=20, min_child_weight=0.001, 
                       min_split_gain=0, reg_lambda=0, reg_alpha=0, param_grid=None):
    # 设置5折交叉验证
    cv_fold = KFold(n_splits=5, shuffle=True, random_state=2021)
    model_lgb = lgb.LGBMClassifier(learning_rate=learning_rate,
                                   n_estimators=n_estimators,
                                   num_leaves=num_leaves,
                                   max_depth=max_depth,
                                   bagging_fraction=bagging_fraction,
                                   feature_fraction=feature_fraction,
                                   bagging_freq=bagging_freq,
                                   min_data_in_leaf=min_data_in_leaf,
                                   min_child_weight=min_child_weight,
                                   min_split_gain=min_split_gain,
                                   reg_lambda=reg_lambda,
                                   reg_alpha=reg_alpha,
                                   n_jobs= 8
                                  )
    f1 = make_scorer(f1_score, average='micro')
    grid_search = GridSearchCV(estimator=model_lgb, 
                               cv=cv_fold,
                               param_grid=param_grid,
                               scoring=f1
                              )
    grid_search.fit(X_train, y_train)
    print('模型当前最优参数为:{}'.format(grid_search.best_params_))
    print('模型当前最优得分为:{}'.format(grid_search.best_score_))

2.3、贝叶斯调参

贝叶斯调参的主要思想是:给定优化的目标函数(广义的函数,只需指定输入和输出即可,无需知道内部结构以及数学性质),通过不断地添加样本点来更新目标函数的后验分布(高斯过程,直到后验分布基本贴合于真实分布)。简单的说,就是考虑了上一次参数的信息,从而更好的调整当前的参数。

安装贝叶斯调参

pip install bayesian-optimization
• 1

具体代码就不说了。未运行出来。

这是调参对整体模型的性能影响:

参数对random forest影响:

参数对Gradient Tree Boosting模型参数影响:

有的时候调参结果并未发生太多变化,需要回去特征处理,这样可能 会有意想不到结果

相关文章
|
4月前
|
机器学习/深度学习 运维
大语言模型对时间序列预测真的有用吗?
我们已经看到了语言模型的巨大进步,但时间序列任务,如预测呢?今天我们推荐一篇论文,对现有的语言模型和时间序列做了深入的研究。将探讨了是否可以从大型语言模型(LLMs)中获益于时间序列(TS)预测。
94 11
|
5月前
|
机器学习/深度学习 算法 数据挖掘
机器学习与智能优化——利用简单遗传算法优化FCM
机器学习与智能优化——利用简单遗传算法优化FCM
63 5
|
6月前
|
机器学习/深度学习
【机器学习】噪声数据对贝叶斯模型有什么样的影响?
【5月更文挑战第10天】【机器学习】噪声数据对贝叶斯模型有什么样的影响?
|
6月前
时间序列分析实战(四):Holt-Winters建模及预测
时间序列分析实战(四):Holt-Winters建模及预测
|
6月前
|
存储 资源调度 数据可视化
R语言STAN贝叶斯线性回归模型分析气候变化影响北半球海冰范围和可视化检查模型收敛性
R语言STAN贝叶斯线性回归模型分析气候变化影响北半球海冰范围和可视化检查模型收敛性
|
6月前
|
机器学习/深度学习 算法 数据挖掘
R语言气象模型集成预报:神经网络、回归、svm、决策树用环流因子预测降雨降水数据
R语言气象模型集成预报:神经网络、回归、svm、决策树用环流因子预测降雨降水数据
|
机器学习/深度学习 监控 并行计算
用于视觉跟踪的在线特征选择研究(Matlab代码实现)
用于视觉跟踪的在线特征选择研究(Matlab代码实现)
106 0
用于视觉跟踪的在线特征选择研究(Matlab代码实现)
对灵敏度分析技术进行建模(Matlab代码实现)
对灵敏度分析技术进行建模(Matlab代码实现)
392 0
|
机器学习/深度学习 人工智能 算法
准确率达 95%,机器学习预测复杂新材料合成
准确率达 95%,机器学习预测复杂新材料合成
191 0
|
数据挖掘
【鲁棒】使用概率轨迹的鲁棒集成聚类研究(Matlab代码实现)
【鲁棒】使用概率轨迹的鲁棒集成聚类研究(Matlab代码实现)
下一篇
无影云桌面