环境安装(二):不同平台皆可安装Paddle

简介: 这篇文章介绍了如何在不同操作系统平台上安装PaddlePaddle,包括Windows和Linux,以及如何使用Paddle Lite在AMD64和ARM架构上部署模型,并提供了官方安装命令和进一步学习资源。

官方地址

开始使用_飞桨-源于产业实践的开源深度学习平台 (paddlepaddle.org.cn)
然后可根据官方地址上的命令,并选择适合自己的cuda版本安装即可。

如 windows:
在这里插入图片描述
如linux
在这里插入图片描述

目录
相关文章
|
11月前
|
SQL 关系型数据库 MySQL
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
MySQL慢查询优化、索引优化,是必知必备,大厂面试高频,本文深入详解,建议收藏。关注【mikechen的互联网架构】,10年+BAT架构经验分享。
大厂面试官:聊下 MySQL 慢查询优化、索引优化?
|
JSON 人工智能 数据格式
AI计算机视觉笔记二十六:YOLOV8自训练关键点检测
本文档详细记录了使用YOLOv8训练关键点检测模型的过程。首先通过清华源安装YOLOv8,并验证安装。接着通过示例权重文件与测试图片`bus.jpg`演示预测流程。为准备训练数据,文档介绍了如何使用`labelme`标注工具进行关键点标注,并提供了一个Python脚本`labelme2yolo.py`将标注结果从JSON格式转换为YOLO所需的TXT格式。随后,通过Jupyter Notebook可视化标注结果确保准确性。最后,文档展示了如何组织数据集目录结构,并提供了训练与测试代码示例,包括配置文件`smoke.yaml`及训练脚本`train.py`,帮助读者完成自定义模型的训练与评估。
3154 2
|
8月前
|
人工智能 自然语言处理 负载均衡
评测|零门槛,即刻拥有DeepSeek-R1满血版
DeepSeek是阿里云推出的一款强大的推理模型,尤其擅长处理数学、代码和自然语言等复杂任务。其在少量标注数据下显著提升推理能力,吸引了众多开发者关注。阿里云提供的零门槛、即刻拥有的DeepSeek-R1满血版解决方案,支持便捷的云上调用和部署,无需编码,最快5分钟、最低0元即可部署实现。该方案具备负载均衡和自动扩缩容机制,保障API调用稳定性,并提供Chatbox可视化界面简化调用流程,极大降低了使用门槛和成本,适合新手和企业用户快速上手。
1310 1
评测|零门槛,即刻拥有DeepSeek-R1满血版
|
11月前
|
JavaScript 前端开发 安全
JavaScript与TypeScript的对比,分析了两者的特性及在实际项目中的应用选择
本文深入探讨了JavaScript与TypeScript的对比,分析了两者的特性及在实际项目中的应用选择。JavaScript以其灵活性和广泛的生态支持著称,而TypeScript通过引入静态类型系统,提高了代码的可靠性和可维护性,特别适合大型项目。文章还讨论了结合使用两种语言的优势,以及如何根据项目需求和技术背景做出最佳选择。
1051 4
|
机器学习/深度学习 并行计算 安全
ImportError: DLL load failed while importing libpaddle: 找不到指定的模块问题
【6月更文挑战第7天】ImportError: DLL load failed while importing libpaddle: 找不到指定的模块问题
2994 0
|
机器学习/深度学习 人工智能 文字识别
AI计算机视觉笔记二十:PaddleOCR环境搭建及测试
OCR技术广泛应用于日常生活中,与人脸识别一样常见。PaddleOCR是一个基于飞桨的OCR工具库,具有超轻量级中文OCR模型,支持中英文数字组合、竖排及长文本识别。本文档详细介绍了PaddleOCR的学习过程,包括环境搭建、安装、样本标注及测试步骤。使用AutoDL云平台进行环境创建,并提供了详细的命令行操作指南,帮助用户顺利完成PaddleOCR的部署与测试。
|
存储 自然语言处理 算法
【算法精讲系列】MGTE系列模型,RAG实施中的重要模型
检索增强生成(RAG)结合检索与生成技术,利用外部知识库提升大模型的回答准确性与丰富性。RAG的关键组件包括文本表示模型和排序模型,前者计算文本向量表示,后者进行精细排序。阿里巴巴通义实验室推出的GTE-Multilingual系列模型,具备高性能、长文档支持、多语言处理及弹性向量表示等特性,显著提升了RAG系统的检索与排序效果。该系列模型已在多个数据集上展示出优越性能,并支持多语言和长文本处理,适用于各种复杂应用场景。
2295 18
|
Linux Docker 异构计算
模型部署 — PaddleNLP 基于 Paddle Serving 快速使用(服务化部署 - Docker)— 图像识别 + 信息抽取(UIE-X)
模型部署 — PaddleNLP 基于 Paddle Serving 快速使用(服务化部署 - Docker)— 图像识别 + 信息抽取(UIE-X)
294 0
|
机器学习/深度学习 编解码 算法
算法工程师面试问题总结 | YOLOv5面试考点原理全解析
本文给大家带来的百面算法工程师是深度学习目标检测YOLOv5面试总结,文章内总结了常见的提问问题,旨在为广大学子模拟出更贴合实际的面试问答场景。在这篇文章中,我们还将介绍一些常见的深度学习目标检测面试问题,并提供参考的回答及其理论基础,以帮助求职者更好地准备面试。通过对这些问题的理解和回答,求职者可以展现出自己的深度学习目标检测领域的专业知识、解决问题的能力以及对实际应用场景的理解。同时,这也是为了帮助求职者更好地应对深度学习目标检测岗位的面试挑战,提升面试的成功率和竞争力。
|
编解码 JSON 数据可视化
DeepSeek VL系列开源,魔搭社区模型微调最佳实践教程来啦!
3月11日,DeepSeek-AI开源了全新多模态大模型DeepSeek-VL系列,包含1.3b、7b两种不同规模的4个版本的模型。