聊聊JIT是如何影响JVM性能的!

简介: 聊聊JIT是如何影响JVM性能的!

我们知道Java虚拟机栈是线程私有的,每个线程对应一个栈,每个线程在执行一个方法时会创建一个对应的栈帧,栈帧负责存储局部变量变量表、操作数栈、动态链接和方法返回地址等信息,每个方法的调用过程,相当于栈帧在Java栈的入栈和出栈过程

但是栈帧的创建是需要耗费资源的,尤其是对于 Java 中常见的 getter、setter 方法来说,这些代码通常只有一行,每次都创建栈帧的话就太浪费了。

另外,Java 虚拟机栈对代码的执行,采用的是字节码解释执行的方式,考虑到下面这段代码,变量 a 声明之后,就再也不被使用,要是按照字节码指令解释执行的话,就要做很多无用功。

public class A{
    int attr = 0;
    public void test(){
        int a = attr;
        System.out.println("月伴飞鱼");
    }
}

执行如下命令:

javap -v A

可以看到这段代码的字节码指令

我们能够看到 aload_0,getfield ,istore_1 这三个无用的字节码指令操作。

aload_0 从局部变量0中装载引用类型值,getfield 从对象中获取字段,istore_1 将int类型值存入局部变量1

另外,我们知道垃圾回收器回收的目标区域主要是堆,堆上创建的对象越多,GC 的压力就越大。要是能把一些变量,直接在栈上分配,那 GC 的压力就会小一些。

其实,我们说的这几个优化的可能性,JVM 已经通过JIT 编译器(Just In Time Compiler)去做了,JIT 最主要的目标是把解释执行变成编译执行。

为了提高热点代码的执行效率,在运行时,虚拟机将会把这些代码编译成与本地平台相关的机器码,并进行各种层次的优化,这就是 JIT 编译器的功能。

如上图,JVM 会将调用次数很高,或者在 for 循环里频繁被使用的代码,编译成机器码,然后缓存起来,下次调用相同方法的时候,就可以直接使用。

那 JIT 编译都有哪些手段呢?接下来我们详细介绍。

方法内联

方法内联它会把一些短小的方法体,直接纳入目标方法的作用范围之内,就像是直接在代码块中追加代码。这样,就少了一次方法调用,执行速度就能够得到提升,这就是方法内联的概念。

可以使用 -XX:-Inline 参数来禁用方法内联,如果想要更细粒度的控制,可以使用 CompileCommand 参数,例如:


-XX:CompileCommand=exclude,java/lang/String.indexOf

在 JDK 的源码里,也有很多被 @ForceInline注解的方法,这些方法,会在执行的时候被强制进行内联;而被@DontInline注解的方法,则始终不会被内联。

JIT 编译之后的二进制代码,是放在 Code Cache 区域里的。这个区域的大小是固定的,而且一旦启动无法扩容。如果 Code Cache 满了,JVM 并不会报错,但会停止编译。所以编译执行就会退化为解释执行,性能就会降低。不仅如此,JIT 编译器会一直尝试去优化你的代码,造成 CPU 占用上升。

通过参数 -XX:ReservedCodeCacheSize 可以指定 Code Cache 区域的大小,如果你通过监控发现空间达到了上限,就要适当的增加它的大小。

分层编译

HotSpot 虚拟机包含多个即时编译器,有 C1,C2 和 Graal,JDK8 以后采用的是分层编译的模式。

JMV使用额外线程进行即时编译,可以不用阻塞解释执行的逻辑。JIT 通常会在触发之后就在后台运行,编译完成之后就将相应的字节码替换为编译后的代码。

「JIT 编译方式有两种:一种是编译方法,另一种是编译循环。」

具体介绍下几个编译器

「C1 编译器」

C1 编译器是一个简单快速的编译器,主要的关注点在于局部性的优化,适用于执行时间较短或对启动性能有要求的程序,也称为Client Compiler,例如,GUI 应用对界面启动速度就有一定要求。

「C2 编译器」

C2 编译器是为长期运行的服务器端应用程序做性能调优的编译器,适用于执行时间较长或对峰值性能有要求的程序,也称为Server Compiler,例如,服务器上长期运行的 Java 应用对稳定运行就有一定的要求。

在 Java7 之前,需要根据程序的特性来选择对应的 JIT,虚拟机默认采用解释器和其中一个编译器配合工作。

「分层编译」

Java7 引入了分层编译,这种方式综合了 C1 的启动性能优势和 C2 的峰值性能优势,我们也可以通过参数 -client或者-server 强制指定虚拟机的即时编译模式。

通常情况下,C2 的执行效率比 C1 高出30%以上。

注意:在 Java8 中,默认开启分层编译,-client 和 -server 的设置已经是无效的了。

如果只想开启 C2,可以关闭分层编译(-XX:-TieredCompilation),如果只想用 C1,可以在打开分层编译的同时,使用参数:-XX:TieredStopAtLevel=1

我们可以通过 java -version命令行可以直接查看到当前系统使用的编译模式:

C:\Users\Administrator>java -version
java version "1.8.0_45"
Java(TM) SE Runtime Environment (build 1.8.0_45-b14)
Java HotSpot(TM) 64-Bit Server VM (build 25.45-b02, mixed mode)

mixed mode代表是默认的混合编译模式,除了这种模式外,我们还可以使用-Xint参数强制虚拟机运行于只有解释器的编译模式下,这时 JIT 完全不介入工作;也可以使用参数-Xcomp强制虚拟机运行于只有 JIT 的编译模式下

逃逸分析

下面着重讲解一下逃逸分析,这个知识点在面试的时候经常会被问到。

有这样一个问题:我们常说的对象,除了基本数据类型,一定是在堆上分配的吗?

答案是否定的,通过逃逸分析,JVM 能够分析出一个新的对象的使用范围,从而决定是否要将这个对象分配到堆上。逃逸分析现在是 JVM 的默认行为,可以通过参数-XX:-DoEscapeAnalysis 关掉它。

那什么样的对象算是逃逸的呢?可以看一下下面的两种典型情况。

如代码所示,对象被赋值给成员变量或者静态变量,可能被外部使用,变量就发生了逃逸。

public class EscapeAttr {
    Object attr;
    public void test() {
        attr = new Object();
    }
}

再看下面这段代码,对象通过 return 语句返回。由于程序并不能确定这个对象后续会不会被使用,外部的线程能够访问到这个结果,对象也发生了逃逸。


public class EscapeReturn {
    Object attr;
    public Object test() {
        Object obj = new Object();
        return obj;
    }
}

那逃逸分析有什么好处呢?

「1. 栈上分配」

如果一个对象在子程序中被分配,指向该对象的指针永远不会逃逸,对象有可能会被优化为栈分配。栈分配可以快速地在栈帧上创建和销毁对象,不用再分配到堆空间,可以有效地减少 GC 的压力。

「2. 分离对象或标量替换」

但对象结构通常都比较复杂,如何将对象保存在栈上呢?

JIT 可以将对象打散,全部替换为一个个小的局部变量,这个打散的过程,就叫作标量替换(标量就是不能被进一步分割的变量,比如 int、long 等基本类型)。也就是说,标量替换后的对象,全部变成了局部变量,可以方便地进行栈上分配,而无须改动其他的代码。

从上面的描述我们可以看到,并不是所有的对象或者数组,都会在堆上分配。由于JIT的存在,如果发现某些对象没有逃逸出方法,那么就有可能被优化成栈分配。

「3.同步消除」

如果一个对象被发现只能从一个线程被访问到,那么对于这个对象的操作可以不考虑同步。

注意这是针对 synchronized 来说的,JUC 中的 Lock 并不能被消除。

要开启同步消除,需要加上 -XX:+EliminateLocks 参数。由于这个参数依赖逃逸分析,所以同时要打开 -XX:+DoEscapeAnalysis 选项。

比如下面这段代码,JIT 判断对象锁只能被一个线程访问,就可以去掉这个同步的影响。

public class SyncEliminate {
    public void test() {
        synchronized (new Object()) {
        }
    }
}

小结

文章内容收录到个人网站,方便阅读hardyfish.top/

JIT 是现代 JVM 主要的优化点,能够显著地提升程序的执行效率。从解释执行到最高层次的 C2,一个数量级的性能提升也是有可能的。

注意:JIT 优化并不见得每次都有用,比如代码中如果发生死循环。但如果你在启动的时候,加上-Djava.compiler=NONE 参数,禁用 JIT,它就能够执行下去。

这篇文章中我们主要看了方法内联、逃逸分析等概念,了解到一些方法在被优化后,对象并不一定是在堆上分配的,它可能在被标量替换后,直接在栈上分配。这几个知识点也是在面试中经常被问到的。

JIT 的这些优化一般都是在后台进程默默地去做了,我们不需要关注太多。同时Code Cache 的容量达到上限,会影响程序执行的效率,但除非你有特别多的代码,默认的 240M 一般来说,足够用了。


相关文章
|
3月前
|
存储 监控 算法
jvm-性能调优(二)
jvm-性能调优(二)
|
5月前
|
Arthas 监控 Java
(十一)JVM成神路之性能调优篇:GC调优、Arthas工具详解及各场景下线上最佳配置推荐
“在当前的互联网开发模式下,系统访问量日涨、并发暴增、线上瓶颈等各种性能问题纷涌而至,性能优化成为了现时代开发过程中炙手可热的名词,无论是在开发、面试过程中,性能优化都是一个常谈常新的话题”。
509 3
|
5月前
|
监控 Java 测试技术
JVM 性能调优 及 为什么要减少 Full GC
JVM 性能调优 及 为什么要减少 Full GC
128 4
|
3月前
|
Kubernetes Java 编译器
解锁极致性能:Quarkus如何让JVM应用调优变得前所未有的简单与高效!
Quarkus是一款专为GraalVM和OpenJDK设计的Kubernetes Native Java框架,采用AOT编译技术将Java应用转化为本地代码,大幅提升启动速度与运行效率。它简化了性能调优流程,如自动优化垃圾回收、类加载、内存管理及线程管理等,使开发者无需深入理解JVM细节即可轻松提升应用性能。与传统JVM应用相比,Quarkus显著降低了性能调优的复杂度。
122 2
|
5月前
|
运维 Java Linux
(九)JVM成神路之性能调优、GC调试、各内存区、Linux参数大全及实用小技巧
本章节主要用于补齐之前GC篇章以及JVM运行时数据区的一些JVM参数,更多的作用也可以看作是JVM的参数列表大全。对于开发者而言,能够控制JVM的部分也就只有启动参数了,同时,对于JVM的性能调优而言,JVM的参数也是基础。
123 8
|
5月前
|
存储 缓存 自然语言处理
(三)JVM成神路之全面详解执行引擎子系统、JIT即时编译原理与分派实现
执行引擎子系统是JVM的重要组成部分之一,在JVM系列的开篇曾提到:JVM是一个架构在平台上的平台,虚拟机是一个相似于“物理机”的概念,与物理机一样,都具备代码执行的能力。
|
4月前
|
缓存 Java 编译器
JRE、JDK、JVM 和 JIT 之间的区别详解
【8月更文挑战第22天】
188 0
|
5月前
|
缓存 Java 编译器
Java演进问题之JVMCI JIT编译器与JVM的交互如何解决
Java演进问题之JVMCI JIT编译器与JVM的交互如何解决
|
5月前
|
JSON Java BI
一次Java性能调优实践【代码+JVM 性能提升70%】
这是我第一次对系统进行调优,涉及代码和JVM层面的调优。如果你能看到最后的话,或许会对你日常的开发有帮助,可以避免像我一样,犯一些低级别的错误。本次调优的代码是埋点系统中的报表分析功能,小公司,开发结束后,没有Code Review环节,所以下面某些问题,也许在Code Review环节就可以避免。
167 0
一次Java性能调优实践【代码+JVM 性能提升70%】
|
4月前
|
监控 算法 Java
深入理解Java虚拟机:JVM调优与性能提升
本文旨在为Java开发者提供一条清晰的路径,以深入掌握Java虚拟机(JVM)的内部机制和性能调优技巧。通过具体案例分析,我们将探讨如何识别性能瓶颈、选择合适的工具进行监控与调试,以及实施有效的优化策略,最终达到提高应用程序性能的目的。文章不仅关注理论,更注重实践应用,帮助读者在面对复杂的Java应用时能够游刃有余。
76 0