c语言回顾-结构体(2)(下)

简介: c语言回顾-结构体(2)(下)

c语言回顾-结构体(2)(上):https://developer.aliyun.com/article/1624398


位段式结构中的位可以理解二进制位

在C语言中,位段的大小取决于编译器和硬件平台的具体实现。通常,位段的大小是按照字节对齐的,但是位段内部的位数是按照定义的位数来分配的。

上述位段占了47位,对齐6个字节,也就是48位,但是用sizeof测试时出来是8字节

在大多数系统中,位段会按照最接近的字节边界对齐。由于这个结构体总共占用了47位,它可能会被对齐到6个字节(48位),因为这是最接近47位的字节数,并且可以容纳所有的位段。

然而,位段的确切大小和对齐方式取决于编译器和硬件平台的具体实现。在某些系统上,如果位段不能恰好填充到一个字节,编译器可能会分配额外的位来填充到下一个字节边界。此外,如果位段的大小超过了单个整数类型(通常是32位或64位)的位数,编译器可能会将它们分割到多个整数中。

3.2位段的内存分配

1. 位段的成员可以是 int unsigned int signed int 或者是 char 等类型

2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。

3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。


struct S
{
 char a:3;
 char b:4;
 char c:5;
 char d:4;
};
struct S s = {0};
s.a = 10;
s.b = 12;
s.c = 3;
s.d = 4;

接下来通过画图来看内存空间的开辟分配

1.在申请的一块内存中,bit位是从左到右,还是从右到左使用,是不确定的,VS是从右到左

2.剩余的空间,不足下一个成员使用的时候,是浪费?还是继续使用?VS采取浪费

ok,回到最上面那个位段求大小

struct A

{

int _a:2;//占2个两个bit位

int _b:5;

int _c:10;

int _d:30;

};

一次性申请4个字节,第一次用17个bit位,剩余15个不够用,根据VS的规则,采取浪费,所以再次申请4个字节存取剩下的_d数据。

即该位段大小为8

3.3位段的跨平台问题

1. int 位段被当成有符号数还是无符号数是不确定的。

2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。

eg:32位或者64位int的长度占4个字节,16位int是2个字节

3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。

4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。

总结:

跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。

所以需要根据不同的平台写不同的代码。

3.4位段的应用

IP数据报的格式,我们可以看到其中很多的属性只需要几个bit位就能描述,这里使用位段,能够实现想要的效果,也节省了空间,这样网络传输的数据报大小也会较小一些,对网络的畅通是有帮助的。

3.5位段使用的注意事项

位段的几个成员共有同一个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位 置处是没有地址的。内存中每个字节分配一个地址,一个字节内部的bit位是没有地址的。

所以不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输入值,只能是先输入放在一个变量中,然后赋值给位段的成员。


struct A {
  int _a : 2;
  int _b : 5;
  int _c : 10;
  int _d : 30;
};
int main() {
   struct A sa = {0};
   scanf("%d", &sa._b);//这是错误的
//正确的⽰范
   int b = 0;
   scanf("%d", &b);
   sa._b = b;
   return 0;
}

下面是搜集的位段注意事项的其他总结

1. 可移植性问题:位段的行为和大小可能因编译器和硬件平台而异。因此,位段不具有可移植性,应该避免在需要跨平台兼容的代码中使用位段。

2. 对齐和大小:位段的对齐方式和大小取决于编译器的实现。编译器可能会将位段对齐到字节边界,这可能导致额外的填充位。因此,不应该假设位段的确切大小,除非编译器文档明确说明了位段的行为。

3. 位段类型:位段通常使用 `unsigned int` 或 `int` 类型定义,但编译器可能会允许其他整数类型。然而,使用非标准类型可能会降低代码的可移植性。

4. 位段操作:位段的操作不如普通变量直观,因为它们涉及到位的操作。在访问和修改位段时,需要小心处理位操作,以避免错误。

5. 位段顺序:位段在内存中的存储顺序可能因编译器而异。有些编译器可能按照位段的定义顺序存储,而其他编译器可能按照相反的顺序存储。

6. 位段跨越字节边界:如果一个位段的大小超过了单个字节的位数,它将会被分割到两个字节中。这可能会导致难以预测的内存布局。

7. 位段的符号性:如果使用 `int` 类型定义位段,位段可能是带符号的。这意味着位段的最高位可能被解释为符号位,这可能会导致意外的行为。为了确保位段是无符号的,应该使用 `unsigned int` 类型。

8. 位段的访问:在某些平台上,访问位段可能比访问普通变量更慢,因为位段需要额外的位操作。

9. 位段的初始化和赋值:位段的初始化和赋值可能需要特殊的位操作,因为它们不是以字节为单位进行操作的。

10. 位段的限制:位段不能用于数组或指针,也不能用于结构体或联合体的嵌套定义。

在使用位段时,应该仔细考虑这些注意事项,并确保代码的可读性、可维护性和正确性。如果可能,应该考虑使用其他技术,如位掩码或位操作函数,来代替位段,以提高代码的可移植性和可读性。

OK,本节内容到此结束,支持小编的留下你的关注,评论和点赞吧!!!

目录
相关文章
|
2月前
|
存储 C语言
如何在 C 语言中实现结构体的深拷贝
在C语言中实现结构体的深拷贝,需要手动分配内存并逐个复制成员变量,确保新结构体与原结构体完全独立,避免浅拷贝导致的数据共享问题。具体方法包括使用 `malloc` 分配内存和 `memcpy` 或手动赋值。
45 10
|
2月前
|
存储 大数据 编译器
C语言:结构体对齐规则
C语言中,结构体对齐规则是指编译器为了提高数据访问效率,会根据成员变量的类型对结构体中的成员进行内存对齐。通常遵循编译器默认的对齐方式或使用特定的对齐指令来优化结构体布局,以减少内存浪费并提升性能。
|
2月前
|
编译器 C语言
共用体和结构体在 C 语言中的优先级是怎样的
在C语言中,共用体(union)和结构体(struct)的优先级相同,它们都是用户自定义的数据类型,用于组合不同类型的数据。但是,共用体中的所有成员共享同一段内存,而结构体中的成员各自占用独立的内存空间。
|
2月前
|
存储 C语言
C语言:结构体与共用体的区别
C语言中,结构体(struct)和共用体(union)都用于组合不同类型的数据,但使用方式不同。结构体为每个成员分配独立的内存空间,而共用体的所有成员共享同一段内存,节省空间但需谨慎使用。
|
2月前
|
编译器 C语言 C++
C语言结构体
C语言结构体
28 5
|
2月前
|
C语言
C语言结构体链式结构之有头单链表
文章提供了一个C语言实现的有头单链表的完整代码,包括创建链表、插入、删除和打印等基本操作。
31 1
|
2月前
|
C语言
初识C语言6——结构体
初识C语言6——结构体
18 3
|
2月前
|
存储 编译器 C语言
【C语言】探索结构体基础知识:简明概要
【C语言】探索结构体基础知识:简明概要
|
2月前
|
编译器 Linux C语言
C语言 之 结构体超详细总结
C语言 之 结构体超详细总结
21 0
|
2月前
|
存储 编译器 Linux
深入C语言:探索结构体的奥秘
深入C语言:探索结构体的奥秘