c语言回顾-结构体(2)(上):https://developer.aliyun.com/article/1624398
位段式结构中的位可以理解二进制位
在C语言中,位段的大小取决于编译器和硬件平台的具体实现。通常,位段的大小是按照字节对齐的,但是位段内部的位数是按照定义的位数来分配的。
上述位段占了47位,对齐6个字节,也就是48位,但是用sizeof测试时出来是8字节
在大多数系统中,位段会按照最接近的字节边界对齐。由于这个结构体总共占用了47位,它可能会被对齐到6个字节(48位),因为这是最接近47位的字节数,并且可以容纳所有的位段。
然而,位段的确切大小和对齐方式取决于编译器和硬件平台的具体实现。在某些系统上,如果位段不能恰好填充到一个字节,编译器可能会分配额外的位来填充到下一个字节边界。此外,如果位段的大小超过了单个整数类型(通常是32位或64位)的位数,编译器可能会将它们分割到多个整数中。
3.2位段的内存分配
1. 位段的成员可以是 int unsigned int signed int 或者是 char 等类型
2. 位段的空间上是按照需要以4个字节( int )或者1个字节( char )的方式来开辟的。
3. 位段涉及很多不确定因素,位段是不跨平台的,注重可移植的程序应该避免使用位段。
struct S { char a:3; char b:4; char c:5; char d:4; }; struct S s = {0}; s.a = 10; s.b = 12; s.c = 3; s.d = 4;
接下来通过画图来看内存空间的开辟分配
1.在申请的一块内存中,bit位是从左到右,还是从右到左使用,是不确定的,VS是从右到左
2.剩余的空间,不足下一个成员使用的时候,是浪费?还是继续使用?VS采取浪费
ok,回到最上面那个位段求大小
struct A
{
int _a:2;//占2个两个bit位
int _b:5;
int _c:10;
int _d:30;
};
一次性申请4个字节,第一次用17个bit位,剩余15个不够用,根据VS的规则,采取浪费,所以再次申请4个字节存取剩下的_d数据。
即该位段大小为8
3.3位段的跨平台问题
1. int 位段被当成有符号数还是无符号数是不确定的。
2. 位段中最大位的数目不能确定。(16位机器最大16,32位机器最大32,写成27,在16位机器会出问题。
eg:32位或者64位int的长度占4个字节,16位int是2个字节
3. 位段中的成员在内存中从左向右分配,还是从右向左分配标准尚未定义。
4. 当一个结构包含两个位段,第二个位段成员比较大,无法容纳于第一个位段剩余的位时,是舍弃剩余的位还是利用,这是不确定的。
总结:
跟结构相比,位段可以达到同样的效果,并且可以很好的节省空间,但是有跨平台的问题存在。
所以需要根据不同的平台写不同的代码。
3.4位段的应用
IP数据报的格式,我们可以看到其中很多的属性只需要几个bit位就能描述,这里使用位段,能够实现想要的效果,也节省了空间,这样网络传输的数据报大小也会较小一些,对网络的畅通是有帮助的。
3.5位段使用的注意事项
位段的几个成员共有同一个字节,这样有些成员的起始位置并不是某个字节的起始位置,那么这些位 置处是没有地址的。内存中每个字节分配一个地址,一个字节内部的bit位是没有地址的。
所以不能对位段的成员使用&操作符,这样就不能使用scanf直接给位段的成员输入值,只能是先输入放在一个变量中,然后赋值给位段的成员。
struct A { int _a : 2; int _b : 5; int _c : 10; int _d : 30; }; int main() { struct A sa = {0}; scanf("%d", &sa._b);//这是错误的 //正确的⽰范 int b = 0; scanf("%d", &b); sa._b = b; return 0; }
下面是搜集的位段注意事项的其他总结
1. 可移植性问题:位段的行为和大小可能因编译器和硬件平台而异。因此,位段不具有可移植性,应该避免在需要跨平台兼容的代码中使用位段。
2. 对齐和大小:位段的对齐方式和大小取决于编译器的实现。编译器可能会将位段对齐到字节边界,这可能导致额外的填充位。因此,不应该假设位段的确切大小,除非编译器文档明确说明了位段的行为。
3. 位段类型:位段通常使用 `unsigned int` 或 `int` 类型定义,但编译器可能会允许其他整数类型。然而,使用非标准类型可能会降低代码的可移植性。
4. 位段操作:位段的操作不如普通变量直观,因为它们涉及到位的操作。在访问和修改位段时,需要小心处理位操作,以避免错误。
5. 位段顺序:位段在内存中的存储顺序可能因编译器而异。有些编译器可能按照位段的定义顺序存储,而其他编译器可能按照相反的顺序存储。
6. 位段跨越字节边界:如果一个位段的大小超过了单个字节的位数,它将会被分割到两个字节中。这可能会导致难以预测的内存布局。
7. 位段的符号性:如果使用 `int` 类型定义位段,位段可能是带符号的。这意味着位段的最高位可能被解释为符号位,这可能会导致意外的行为。为了确保位段是无符号的,应该使用 `unsigned int` 类型。
8. 位段的访问:在某些平台上,访问位段可能比访问普通变量更慢,因为位段需要额外的位操作。
9. 位段的初始化和赋值:位段的初始化和赋值可能需要特殊的位操作,因为它们不是以字节为单位进行操作的。
10. 位段的限制:位段不能用于数组或指针,也不能用于结构体或联合体的嵌套定义。
在使用位段时,应该仔细考虑这些注意事项,并确保代码的可读性、可维护性和正确性。如果可能,应该考虑使用其他技术,如位掩码或位操作函数,来代替位段,以提高代码的可移植性和可读性。