还在死磕AI咒语?北大-百川搞了个自动提示工程系统PAS

简介: 【10月更文挑战第4天】北京大学和百川智能研究人员开发了一种名为PAS的即插即用自动提示工程(APE)系统,利用高质量数据集训练的大型语言模型(LLMs),在基准测试中取得了显著成果,平均提升了6.09个百分点。PAS仅需9000个数据点即可实现顶尖性能,并能自主生成提示增强数据,提高了灵活性和效率。尽管存在训练数据质量和提示多样性等方面的潜在局限性,PAS仍为解决提示工程挑战提供了有前景的方法,有望提升LLM的可用性和有效性。论文详见:https://arxiv.org/abs/2407.06027。

近年来,随着大型语言模型(LLMs)的崛起,对即插即用AI系统的需求日益增长。其中,提示工程作为一种重要的AI技术,备受关注。然而,用户在编写提示时往往面临学习曲线陡峭和时间投入巨大的挑战,而现有的自动提示工程(APE)模型使用起来也存在困难。为了解决这些问题,北京大学和百川智能的研究人员提出了一种基于LLM的即插即用APE系统——PAS。

PAS的提出旨在利用经过高质量、自动生成的提示补充数据集训练的LLM,实现出色的性能。在全面的基准测试中,PAS与之前的APE模型相比取得了最先进的(SoTA)结果,平均提高了6.09个百分点。此外,PAS还具有很高的效率,仅使用9000个数据点就实现了SoTA性能。

PAS的一个显著特点是能够自主生成提示增强数据,而无需额外的人力劳动。这使得PAS具有很高的灵活性,可以与所有现有的LLM兼容,并适用于各种任务。在人类评估中,PAS也表现出色,突显了其作为用户插件的适用性。

然而,尽管PAS在性能、效率和灵活性方面具有优势,但也有一些潜在的局限性。首先,PAS的性能可能受到训练数据质量的影响。如果训练数据存在偏差或不完整,可能会影响PAS在实际应用中的效果。其次,PAS的自主生成能力虽然提高了效率,但也可能导致生成的提示缺乏多样性或创新性。

尽管如此,PAS的提出为解决提示工程中的挑战提供了一种有前途的方法。通过利用高质量的训练数据和自主生成能力,PAS有望提高LLM的可用性和有效性,为用户提供更好的体验。随着进一步的研究和优化,PAS有望在未来的AI应用中发挥重要作用。

在技术发展日新月异的今天,我们见证了人工智能领域的许多突破。其中,大型语言模型(LLMs)的崛起为我们带来了前所未有的机遇和挑战。为了更好地利用这些模型的能力,研究人员和工程师们不断探索新的技术和方法。

提示工程就是其中之一。通过精心设计的提示,我们可以引导模型生成符合我们需求的输出。然而,编写有效的提示并不容易,需要深厚的专业知识和丰富的经验。为了解决这个问题,研究人员提出了自动提示工程(APE)的概念,旨在通过自动化的方式生成高质量的提示。

在这方面,北京大学和百川智能的研究人员取得了重要的进展。他们提出了一种名为PAS的即插即用APE系统,利用经过高质量数据集训练的LLM来实现出色的性能。PAS在基准测试中取得了令人瞩目的结果,与之前的APE模型相比,平均提高了6.09个百分点。

PAS的另一个重要特点是其效率。与之前的方法相比,PAS仅使用9000个数据点就实现了SoTA性能,这对于资源有限的应用场景尤为重要。此外,PAS还具有自主生成提示增强数据的能力,进一步提高了其灵活性和适用性。

然而,我们也应该看到PAS的一些潜在局限性。首先,PAS的性能可能受到训练数据质量的影响。如果训练数据存在偏差或不完整,可能会影响PAS在实际应用中的效果。其次,PAS的自主生成能力虽然提高了效率,但也可能导致生成的提示缺乏多样性或创新性。

论文地址:https://arxiv.org/abs/2407.06027

目录
相关文章
|
14天前
|
人工智能 监控 搜索推荐
给RAG打分:小白也能懂的AI系统评测全攻略
RAG系统评估听起来高深,其实跟我们生活中的'尝鲜评测'没啥两样!本文用轻松幽默的方式,带你从检索质量、生成质量到用户体验,全方位掌握如何科学评测RAG系统,避免踩坑,让你的AI应用又快又准。#RAG技术 #AI评估 #信息检索 #大模型 #数据科学
|
8天前
|
SQL 人工智能 数据可视化
高校迎新管理系统:基于 smardaten AI + 无代码开发实践
针对高校迎新痛点,基于smardaten无代码平台构建全流程数字化管理系统,集成信息采集、绿色通道、宿舍管理等七大模块,通过AI生成框架、可视化配置审批流与权限,实现高效、精准、可扩展的迎新服务,大幅提升管理效率与新生体验。
|
2月前
|
存储 人工智能 NoSQL
万字解码 Agentic AI 时代的记忆系统演进之路
本文深入探讨了在 Agentic AI 时代,记忆(Memory) 作为智能体核心能力的定义、构建与技术演进。
万字解码 Agentic AI 时代的记忆系统演进之路
|
3天前
|
人工智能 数据库 索引
超越幻觉:检索增强生成如何为AI大模型“装上”事实核查系统
超越幻觉:检索增强生成如何为AI大模型“装上”事实核查系统
156 107
|
2月前
|
人工智能 算法 前端开发
超越Prompt Engineering:揭秘高并发AI系统的上下文工程实践
本文系统解析AI工程范式从Prompt Engineering到Context Engineering的演进路径,深入探讨RAG、向量数据库、上下文压缩等关键技术,并结合LangGraph与智能体系统架构,助力开发者构建高可靠AI应用。
231 1
|
2月前
|
人工智能 监控 搜索推荐
使用LangGraph从零构建多智能体AI系统:实现智能协作的完整指南
本文将通过构建AI研究助手的完整案例,展示如何使用LangGraph框架实现这种架构转变,从理论基础到具体实现,帮助你掌握下一代AI系统的构建方法。
499 0
使用LangGraph从零构建多智能体AI系统:实现智能协作的完整指南
|
14天前
|
人工智能 JSON 测试技术
AI智能体开发实战:从提示工程转向上下文工程的完整指南
曾被热捧的提示工程正逐渐退潮,本文揭示其局限性,并提出“上下文工程”新范式:通过结构化提示、精准上下文管理、工具调用与统一状态,构建可扩展、可恢复、生产级的智能体工作流,推动AI系统迈向工程化与可控化。
171 9
AI智能体开发实战:从提示工程转向上下文工程的完整指南
|
3天前
|
人工智能 JSON 机器人
超越简单指令:解锁AI潜力的提示工程艺术
超越简单指令:解锁AI潜力的提示工程艺术

热门文章

最新文章