大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(一)

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: 大数据-141 - ClickHouse 集群 副本和分片 Zk 的配置 Replicated MergeTree原理详解(一)

点一下关注吧!!!非常感谢!!持续更新!!!

目前已经更新到了:

Hadoop(已更完)

HDFS(已更完)

MapReduce(已更完)

Hive(已更完)

Flume(已更完)

Sqoop(已更完)

Zookeeper(已更完)

HBase(已更完)

Redis (已更完)

Kafka(已更完)

Spark(已更完)

Flink(已更完)

ClickHouse(正在更新···)

章节内容

上节我们完成了如下的内容:


MergeTree 的最后一个:CollapsingMergeTree

ClickHouse 其他数据源:HDFS MySQL

附带实现案例

副本介绍

ReplicatedMergeTree

ZooKeeper:实现多个实例之间的通信。


副本的特点

作为数据副本的主要载体,ReplicatedMergeTree在设计上有一些缺点:


依赖ZooKeeper: 在执行INSERT和ALTER查询的时候,ReplicatedMergeTree需要借助ZooKeeper的分布式协同功能,以实现多个副本之间的同步。但是在查询副本的时候,并不需要ZooKeeper。

表级别的副本:副本是在表级别定义的,所以每张表的副本配置都可以按照它的实际需求进行个性化定义,包括副本的数量,以及副本在集群内的分布位置等。

多主架构(Multi Master):可以在任意一个副本上执行INSERT和ALTER查询,他们效果是相同的,这些操作会借助ZooKeeper的协同能力被分发至每个副本以本地的形式执行。

Block数据块,在执行INSERT命令写入数据时,会依据max_block_size的大小(默认1048576行)将数据切分成 若干个Block数据块。所以Block数据块是数据写入的基本单元,并且具有写入的原子性和唯一性。

原子性:在数据写入时,一个Block块内的数据要么全部写入成功,要不全部失败。

唯一性:在写一个Block数据块的时候,会按照当前Block数据块的数据顺序、数据行和数据大小等指标,计算Hash信息摘要并记录在案。在此之后,如果某个待写入的Block数据块与先前被写入的Block数据块拥有相同的Hash摘要(Block数据块内数据顺序、数据大小和数据行均相同),则该Block数据块会被忽略,这项设计可以预防由异常原因引起的Block数据块重复写入问题。

ZK的配置

之前配置

之前章节我们已经配置过了ZK,配置好了集群模式。

这里简单提一下,如果你没有做好,你需要回去之前的章节完成。

<yandex>
  <zookeeper-servers>
    <node index="1">
      <host>h121.wzk.icu</host>
      <port>2181</port>
    </node>
    <node index="2">
      <host>h122.wzk.icu</host>
      <port>2181</port>
    </node>
    <node index="3">
      <host>h123.wzk.icu</host>
      <port>2181</port>
    </node>
  </zookeeper-servers>
</yandex>

开启ZK

但是我们没有开启ZK,我们需要在配置文件中开启:

vim /etc/clickhouse-server/config.xml

# 在之前配置的地方,再加入一行
<include_from>/etc/clickhouse-server/config.d/metrika.xml</include_from>
# 之前没有下面的一行
<zookeeper incl="zookeeper-servers" optional="true" />

配置结果如下图所示:

重启服务

systemctl restart clickhouse-server

检验结果

# 连接到ClickHouse
clickhouse-client -m --host h121.wzk.icu --port 9001 --user default --password click

接着执行SQL检查是否成功链接到了 ZooKeeper

SELECT * FROM system.zookeeper WHERE path = '/';
• 1

执行结果如下图,如果你也是这样的没有报错,说明配置ZooKeeper服务成功!

集群配置

如果有需要,记得将其他的节点都按照如上配置方式配置完毕。

副本定义形式

创建新表

CREATE TABLE replicated_sales_5(
  `id` String,
  `price` Float64,
  `create_time` DateTime
) ENGINE = ReplicatedMergeTree('/clickhouse/tables/01/replicated_sales_5', 'h121.wzk.icu')
PARTITION BY toYYYYMM(create_time)
ORDER BY id;
  • /clickhouse/tables 约定俗成的路径
  • /01/ 分片编号
  • replicated_sales_5 数据表的名字 建议与物理表名字相同
  • h121.wzk.icu 在ZK中创建副本的名称,约定俗成是服务器的名称

执行结果如下图所示:

查询结果

可以检查刚才的操作结果:

select * from system.zookeeper where path = '/clickhouse';
• 1

执行结果内容如下:

查看ZK

进入到ZK中,对数据进行查看:

zkCli.sh
• 1

执行结果如下图所示:

接下篇:https://developer.aliyun.com/article/1623004

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps&nbsp;
目录
相关文章
|
21天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
56 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
12天前
|
存储 监控 数据挖掘
【Clikhouse 探秘】ClickHouse 物化视图:加速大数据分析的新利器
ClickHouse 的物化视图是一种特殊表,通过预先计算并存储查询结果,显著提高查询性能,减少资源消耗,适用于实时报表、日志分析、用户行为分析、金融数据分析和物联网数据分析等场景。物化视图的创建、数据插入、更新和一致性保证通过事务机制实现。
63 14
|
20天前
|
分布式计算 大数据 BI
ClickHouse与大数据生态整合:从ETL到BI报表
【10月更文挑战第27天】在这个数据驱动的时代,企业越来越依赖于数据来做出关键决策。而高效的数据处理和分析能力则是支撑这一需求的基础。作为一位数据工程师,我有幸参与到一个项目中,该项目旨在利用ClickHouse与Hadoop、Spark、Flink等大数据处理框架的整合,构建一个从数据提取(Extract)、转换(Transform)、加载(Load)到最终生成商业智能(BI)报表的全流程解决方案。以下是我在这个项目中的经验和思考。
35 1
|
1月前
|
存储 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
40 1
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(一)
|
1月前
|
存储 JSON 监控
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
大数据-167 ELK Elasticsearch 详细介绍 特点 分片 查询
52 4
|
1月前
|
运维 监控 数据可视化
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
大数据-171 Elasticsearch ES-Head 与 Kibana 配置 使用 测试
65 1
|
20天前
|
存储 Prometheus 监控
构建高可用性ClickHouse集群:从理论到实践
【10月更文挑战第27天】在数据驱动的时代,构建一个稳定、高效的数据库系统对于企业的业务发展至关重要。作为一名数据工程师,我深知数据库系统的高可用性和可扩展性对于支撑企业应用的重要性。在这篇文章中,我将分享如何构建一个高可用性的ClickHouse集群,从分布式表的设计到数据复制与分片,再到故障恢复机制,确保系统在大规模数据处理中的稳定性和可靠性。
49 0
|
1月前
|
消息中间件 分布式计算 druid
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(二)
大数据-152 Apache Druid 集群模式 配置启动【下篇】 超详细!(二)
41 2
|
1月前
|
存储 消息中间件 druid
大数据-151 Apache Druid 集群模式 配置启动【上篇】 超详细!
大数据-151 Apache Druid 集群模式 配置启动【上篇】 超详细!
80 1
|
21天前
|
存储 监控 大数据
构建高可用性ClickHouse集群:从单节点到分布式
【10月更文挑战第26天】随着业务的不断增长,单一的数据存储解决方案可能无法满足日益增加的数据处理需求。在大数据时代,数据库的性能、可扩展性和稳定性成为企业关注的重点。ClickHouse 是一个用于联机分析处理(OLAP)的列式数据库管理系统(DBMS),以其卓越的查询性能和高吞吐量而闻名。本文将从我的个人角度出发,分享如何将单节点 ClickHouse 扩展为高可用性的分布式集群,以提升系统的稳定性和可靠性。
50 0
下一篇
无影云桌面