阿里国际AI开源Ovis1.6,多项得分超GPT-4o-mini!

简介: 阿里国际AI团队提出了一种名为Ovis (Open VISion)的新型多模态大模型的架构。

01

引言

大型语言模型(LLM)近年来取得了长足进步,为通用人工智能(AGI)带来了曙光。这些模型展现出强大的文本理解和生成能力,但要真正接近人类智能的复杂性和多面性,LLM必须突破纯文本的限制,具备理解视觉信息的能力。为此,研究者们将目光投向了多模态大模型,旨在赋予模型感知和理解视觉信息的能力。

阿里国际AI团队提出了一种名为Ovis (Open VISion)的新型多模态大模型的架构。Ovis借鉴了LLM中的文本嵌入策略,引入了可学习的视觉嵌入表,将连续的视觉特征先转换为概率化的视觉token,再经由视觉嵌入表多次索引加权得到结构化的视觉嵌入。近期,阿里国际AI团队再次开源多模态大模型Ovis1.6,并在多模态权威综合评测基准OpenCompass上,在300亿以下参数开源模型中位居第一。Ovis1.6能胜任视觉感知推理、数学和科学、生活场景等多种多模态任务,尤其是在数学推理和视觉理解等多项任务中,得分甚至超过了闭源的GPT-4o-mini。

如何做到?阿里国际AI团队的核心思路是:从结构上对齐视觉和文本嵌入。如下图所示,Ovis包含三个组件:视觉tokenizer、视觉embedding表和LLM。

添加图片注释,不超过 140 字(可选)

Ovis借鉴了大语言模型中的文本embedding策略,引入了可学习的视觉embedding表,将连续的视觉特征先转换为概率化的视觉token,再经由视觉embedding表多次索引加权得到结构化的视觉embedding。

文本方面,Ovis沿用当前大语言模型的处理方式,文本tokenizer将输入文本转化为one-hot token,并根据文本embedding表查找到每个文本token对应的嵌入向量。

最后,Ovis将所有视觉embedding向量与文本embedding向量拼接起来,经由Transformer处理,完成多模态任务。

基于Ovis1.5,本次开源的Ovis1.6进一步增强了高分辨率图像处理能力,采用了更大、更多样化且质量更高的数据集进行训练,并通过遵循指令微调的DPO训练过程优化了训练流程。

Ovis MLLMs

ViT

LLM

Ovis1.6-Gemma2-9B

Siglip-400M

Gemma2-9B-It

架构方面,采用动态子图方案,能灵活应对不同分辨率图像特征,提升了模型处理复杂视觉任务的能力。

数据方面,Ovis1.6在训练中涵盖了多种类型的数据集,包括Caption、OCR、Table、Chart、Math等,确保模型在广泛的应用场景中都有出色表现。

训练策略方面,采用DPO等方案持续优化模型性能,增强了模型在生成文本和理解复杂指令方面的能力,使得模型在复杂任务上的表现进一步提升。

消融实验的结果还显示,在训练数据、模型参数、LLM和视觉底座都保持相同的情况下,与基于MLP连接器的多模态大模型架构相比,Ovis性能整体提升了8.8%。

模型链接:

https://modelscope.cn/models/AIDC-AI/Ovis1.6-Gemma2-9B

代码链接:

https://github.com/AIDC-AI/Ovis

论文链接:

https://arxiv.org/abs/2405.20797

体验链接:

https://modelscope.cn/studios/AIDC-AI/Ovis1.6-Gemma2-9B

02

模型体验

模型解读:

年报解读:

图片理解:

菜谱分析:

拍照解题:

03

模型推理

import torch
from PIL import Image
from modelscope import AutoModelForCausalLM
# load model
model = AutoModelForCausalLM.from_pretrained("AIDC-AI/Ovis1.6-Gemma2-9B",
                                             torch_dtype=torch.bfloat16,
                                             multimodal_max_length=8192,
                                             trust_remote_code=True).cuda()
text_tokenizer = model.get_text_tokenizer()
visual_tokenizer = model.get_visual_tokenizer()
# enter image path and prompt
image_path = input("Enter image path: ")
image = Image.open(image_path)
text = input("Enter prompt: ")
query = f'<image>\n{text}'
# format conversation
prompt, input_ids, pixel_values = model.preprocess_inputs(query, [image])
attention_mask = torch.ne(input_ids, text_tokenizer.pad_token_id)
input_ids = input_ids.unsqueeze(0).to(device=model.device)
attention_mask = attention_mask.unsqueeze(0).to(device=model.device)
pixel_values = [pixel_values.to(dtype=visual_tokenizer.dtype, device=visual_tokenizer.device)]
# generate output
with torch.inference_mode():
    gen_kwargs = dict(
        max_new_tokens=1024,
        do_sample=False,
        top_p=None,
        top_k=None,
        temperature=None,
        repetition_penalty=None,
        eos_token_id=model.generation_config.eos_token_id,
        pad_token_id=text_tokenizer.pad_token_id,
        use_cache=True
    )
    output_ids = model.generate(input_ids, pixel_values=pixel_values, attention_mask=attention_mask, **gen_kwargs)[0]
    output = text_tokenizer.decode(output_ids, skip_special_tokens=True)
    print(f'Output:\n{output}')

显存占用:

04

模型微调

我们使用ms-swift对Ovis1.6进行微调。ms-swift是魔搭社区官方提供的大模型与多模态大模型微调推理框架。

ms-swift开源地址:

https://github.com/modelscope/ms-swift

通常,多模态大模型微调会使用自定义数据集进行微调。在这里,我们将展示可直接运行的demo。我们使用Latex-OCR数据集:https://modelscope.cn/datasets/AI-ModelScope/LaTeX_OCR 进行微调。

在开始微调之前,请确保您的环境已准备妥当。

pip install ms-swift[llm]==2.* -U

微调脚本:

# 默认:微调 LLM, 冻结 vision encoder
CUDA_VISIBLE_DEVICES=0 swift sft \
  --model_type ovis1_6-gemma2-9b \
  --model_id_or_path AIDC-AI/Ovis1.6-Gemma2-9B \
  --sft_type lora \
  --dataset latex-ocr-print#5000
# Deepspeed ZeRO2
NPROC_PER_NODE=4 \
CUDA_VISIBLE_DEVICES=0,1,2,3 swift sft \
  --model_type ovis1_6-gemma2-9b \
  --model_id_or_path AIDC-AI/Ovis1.6-Gemma2-9B \
  --sft_type lora \
  --dataset latex-ocr-print#5000 \
  --deepspeed default-zero2

训练显存占用:

如果要使用自定义数据集,只需按以下方式进行指定:

# val_dataset可选,如果不指定,则会从dataset中切出一部分数据集作为验证集
    --dataset train.jsonl \
    --val_dataset val.jsonl \
{"query": "<image>55555", "response": "66666", "images": ["image_path"]}
{"query": "<image><image>eeeee", "response": "fffff", "history": [], "images": ["image_path1", "image_path2"]}
{"query": "EEEEE", "response": "FFFFF", "history": [["query1", "response1"], ["query2", "response2"]]}

训练loss图:

微调后推理脚本如下:

CUDA_VISIBLE_DEVICES=0 swift infer \
    --ckpt_dir output/ovis1_6-gemma2-9b/vx-xxx/checkpoint-xxx \
    --load_dataset_config true
# or merge-lora & infer
CUDA_VISIBLE_DEVICES=0 swift infer \
    --ckpt_dir output/ovis1_6-gemma2-9b/vx-xxx/checkpoint-xxx \
    --load_dataset_config true --merge_lora true

微调后模型对验证集进行推理的结果:


点击链接👇即可跳转模型详情~

https://modelscope.cn/studios/AIDC-AI/Ovis1.6-Gemma2-9B

相关文章
|
1月前
|
人工智能 中间件 数据库
沐曦 GPU 融入龙蜥,共筑开源 AI 基础设施新底座
沐曦自加入社区以来,一直与龙蜥社区在推动 AIDC OS 的开源社区建设等方面保持合作。
|
2月前
|
人工智能 Java API
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
本文介绍AI大模型的核心概念、分类及开发者学习路径,重点讲解如何选择与接入大模型。项目基于Spring Boot,使用阿里云灵积模型(Qwen-Plus),对比SDK、HTTP、Spring AI和LangChain4j四种接入方式,助力开发者高效构建AI应用。
1244 122
AI 超级智能体全栈项目阶段一:AI大模型概述、选型、项目初始化以及基于阿里云灵积模型 Qwen-Plus实现模型接入四种方式(SDK/HTTP/SpringAI/langchain4j)
|
30天前
|
人工智能 运维 Java
Spring AI Alibaba Admin 开源!以数据为中心的 Agent 开发平台
Spring AI Alibaba Admin 正式发布!一站式实现 Prompt 管理、动态热更新、评测集构建、自动化评估与全链路可观测,助力企业高效构建可信赖的 AI Agent 应用。开源共建,现已上线!
2594 40
|
30天前
|
人工智能 自然语言处理 Shell
我们开源了一款 AI 驱动的用户社区
KoalaQA 是一款开源的 AI 驱动用户社区,支持智能问答、语义搜索、自动运营与辅助创作,助力企业降低客服成本,提升响应效率与用户体验。一键部署,灵活接入大模型,快速构建专属售后服务社区。
225 5
我们开源了一款 AI 驱动的用户社区
|
2月前
|
人工智能 数据处理 云栖大会
云栖现场|让评测与标注成为AI进化引擎!阿里发布全新评测平台,3大创新评测集亮相
云栖现场|让评测与标注成为AI进化引擎!阿里发布全新评测平台,3大创新评测集亮相
356 9
云栖现场|让评测与标注成为AI进化引擎!阿里发布全新评测平台,3大创新评测集亮相
|
1月前
|
人工智能 搜索推荐 UED
一个牛逼的国产AI自动化工具,开源了 !
AiPy是国产开源AI工具,结合大语言模型与Python,支持本地部署。用户只需用自然语言描述需求,即可自动生成并执行代码,轻松实现数据分析、清洗、可视化等任务,零基础也能玩转编程,被誉为程序员的智能助手。
|
2月前
|
人工智能 安全 架构师
开放、协同,2025 云栖大会“操作系统开源与 AI 进化分论坛”精彩回顾
唯有通过生态开放与技术共享,才能加速 AI 技术的普惠与产业化落地。
|
27天前
|
人工智能 运维 Kubernetes
Serverless 应用引擎 SAE:为传统应用托底,为 AI 创新加速
在容器技术持续演进与 AI 全面爆发的当下,企业既要稳健托管传统业务,又要高效落地 AI 创新,如何在复杂的基础设施与频繁的版本变化中保持敏捷、稳定与低成本,成了所有技术团队的共同挑战。阿里云 Serverless 应用引擎(SAE)正是为应对这一时代挑战而生的破局者,SAE 以“免运维、强稳定、极致降本”为核心,通过一站式的应用级托管能力,同时支撑传统应用与 AI 应用,让企业把更多精力投入到业务创新。
372 29
|
1月前
|
消息中间件 人工智能 安全
云原生进化论:加速构建 AI 应用
本文将和大家分享过去一年在支持企业构建 AI 应用过程的一些实践和思考。
423 26