Elasticsearch写入优化

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
检索分析服务 Elasticsearch 版,2核4GB开发者规格 1个月
简介: 【10月更文挑战第3天】Elasticsearch:从写入原理谈写入优化

写入优化一:副本分片写入前置为0,等完成写入后复原副本
PUT test-0001
{
"settings": {
"number_of_replicas": 0
}
}
写入优化二:优先使用系统自动生成 id
文档的_id 的生成有两种方式,

第一:系统自动生成id。

第二:外部控制自增id。

但,如果使用外部 id,Elasticsearch 会先尝试读取原来文档的版本号,以判断是否需要更新。

也就是说,使用外部控制 id 比系统自动生成id要多一次读取磁盘操作。

所以,非特殊场景推荐使用系统自动生成的 id。

4、基于 Elasticsearch 写入原理谈写入优化
Elasticsearch 中的 1 个索引由一个或多个分片组成,每个分片包含多个segment(段),每一个段都是一个倒排索引

在 lucene 中,为了实现高索引速度,使用了segment 分段架构存储。一批写入数据保存在一个段中,其中每个段最终落地为磁盘中的单个文件。

将文档插入 Elasticsearch 时,它们会被写入缓冲区中,然后在刷新时定期从该缓冲区刷新到段中。刷新频率由 refresh_interval 参数控制,默认每1秒刷新一次。

也就是说,新插入的文档在刷新到段(内存中)之前,是不能被搜索到的

刷新的本质是:写入数据由内存 buffer 写入到内存段中,以保证搜索可见。

来看个例子,加深对 refresh_inteval 的理解,注释部分就是解读。

PUT test_0001/_doc/1
{
"title":"just testing"
}

默认一秒的刷新频率,秒级可见(用户无感知)

GET test_0001/_search
如下设置后,写入后 60s 后才可见。

DELETE test_0001

设置了60s的刷新频率

PUT test_0001
{
"settings": {
"index":{
"refresh_interval":"60s"
}
}
}

PUT test_0001/_doc/1
{
"title":"just testing"
}

60s后才可以被搜索到

GET test_0001/_search
关于是否需要实时刷新:

如果新插入的数据需要近乎实时的搜索功能,则需要频繁刷新。

如果对最新数据的检索响应没有实时性要求,则应增加刷新间隔,以提高数据写入的效率。

所以,自然我们想到的优化是:调整刷新频率。

写入优化三:合理调整刷新频率
调整方法如下:

方法1:写入前刷新频率设置为 -1,写入后设置为业务实际需要值(比如:30s)。

PUT test-008
{
"settings": {
"refresh_interval": -1
}
}
方法2:直接设置为业务实际需要值(比如:30s)

PUT test-008
{
"settings": {
"refresh_interval": "30s"
}
}
写入优化四:合理调整堆内存中索引缓冲区(index_buffer)大小
堆内存中 index_buffer 用于存储新索引的文档。

填满后,缓冲区中的文档将最终写入磁盘上的某个段。

index_buffer_size 默认值如下所示,为堆内存的 10%。

indices.memory.index_buffer_size: 10%
例如,如果给 JVM 31GB的内存,它将为索引缓冲区提供 3.1 GB的内存,一般情况下足以容纳大量数据的写入操作。

但,如果着实数据量非常大,建议调大该默认值。比如:调整为堆内存的 20%。

调整建议:必须在集群中的每个数据节点上进行配置。

缓存区越大,意味着能缓存数据量越大,相同时间段内,写盘频次低、磁盘 IO 小,间接提升写入性能。

写入优化五:给堆外内存也留够空间(常规要求)
这其实算不上写入优化建议,而是通用集群配置的常规配置。

内存分配设置堆内存比例官方建议:机器内存大小一半,但不超过 32 GB。

一般设置建议:

如果内存大小 >= 64 GB,堆内存设置:31 GB。

如果内存大小 < 64 GB,堆内存设置:内存大小一半。

堆内存之外的内存留给:Lucene 使用。

推荐阅读:干货 | 吃透Elasticsearch 堆内存

写入优化六:bulk 批量写入而非单个文档写入
批量写入自然会比单个写入性能要好(批量写入意味着相同时间产生的段会大,段的总个数自然会少),但批量值的设置一般需要慎重,不要盲目一下搞的很大。

一般建议:递增步长测试,直到达到资源使用上限。

比如:第一次批量值设置:100,第二次:200,第三次:400,以此类推......

批量值 bulk 已经 ok 了,但集群尚有富余资源,资源利用并没有饱和怎么办?

上多线程,通过并发提升写入性能。

写入优化七:多线程并发写入
这点,在 logstash 同步数据到 Elasticsearch,基于spark、kafka、Flink 批量写入 Elasticsearch时,经常会出现:Bulk Rejections 的报错。

当批量请求到达集群中的某个节点时,整个请求将被放入批量队列中,并由批量线程池中的线程进行处理。批量线程池处理来自队列的请求,并将文档转发到副本分片,作为此处理的一部分。子请求完成后,将响应发送到协调节点。

Elasticsearch 具有有限大小的请求队列的原因是:为了防止集群过载,从而增加了稳定性和可靠性。

如果没有任何限制,客户端可以很容易地通过恶意攻击行为将整个集群搞宕机。

这里就引申出下面的优化点。

写入优化八:合理设置线程池和队列大小
关于线程池和队列,参考:Elasticsearch 线程池和队列问题,请先看这一篇。

核心建议就是:结合 CPU 核数和 esrally 的测试结果谨慎的调整 write 线程池和队列大小。

为什么要谨慎设置?

针对批量写入拒绝(reject)的场景,官方建议:

增加队列的大小不太可能改善集群的索引性能或吞吐量。相反,这只会使集群在内存中排队更多数据,这很可能导致批量请求需要更长的时间才能完成。

队列中的批量请求越多,将消耗更多的宝贵堆空间。如果堆上的压力太大,则可能导致许多其他性能问题,甚至导致集群不稳定。

推荐阅读:

https://www.elastic.co/cn/blog/why-am-i-seeing-bulk-rejections-in-my-elasticsearch-cluster

5、其他写入优化建议
写入优化九:设置合理的Mapping
实战业务场景中不推荐使用默认 dynamic Mapping,一定要手动设置 Mapping。

举例1:默认字符串类型是:text 和 keyword 的组合类型,就不见得适用所有业务场景。要结合自己业务场景设置,正文 cont 文本内容一般不需要设置 keyword 类型(因为:不需要排序和聚合操作)。

举例2:互联网采集数据存储场景,正文需要全文检索,但包含 html 样式的文本一般留给前端展示用,不需要索引。这时候Mapping 设置阶段要果断将 index 设置为 false。

写入优化十:合理的使用分词器
分词器决定分词的粒度,常见的中文分词 IK 可细分为:

粗粒度分词:ik_smart。

细粒度分词:ik_max_word。

从存储角度基于 ik_max_word 分词的索引会比基于 ik_smart 分词的索引占据空间大。

而更细粒度自定义分词 ngram 会占用大量资源,并且可能减慢索引速度并显着增加索引大小。

所以要结合检索指标(召回率和精准率)、结合写入场景斟酌选型。

写入优化十一:必要时,使用 SSD 磁盘
SSD 很贵,但很香。

尤其针对写入密集型场景,如果其他优化点都考虑了,这可能是你最后一根“救命稻草“。

写入优化十二:合理设置集群节点角色
这也是经常被问到的问题,集群规模小的时候,一般节点会混合多种角色,如:主节点 + 数据节点、数据节点 + 协调节点混合部署。

但,集群规模大了之后,硬件资源相对丰富后,强烈建立:独立主节点、独立协调节点。

让各个角色的节点各尽其责,对写入、检索性能都会有帮助。

写入优化十三:推荐使用官方客户端
推荐使用官方 Elasticsearch API,因为官方在连接池和保持连接状态方面有优化。

高版本 JAVA API 推荐:官方的High-level-Rest API。

其他写入优化
待补充......

6、写入过程中做好监控
如下是 kibana 监控截图,其中:index Rate 就是写入速率。

index rate: 每秒写入的文档数。

search rate:每秒的查询次数(分片级别,非请求级别),也就意味着一次查询请求命中的分片数越多,值越大。

相关实践学习
使用阿里云Elasticsearch体验信息检索加速
通过创建登录阿里云Elasticsearch集群,使用DataWorks将MySQL数据同步至Elasticsearch,体验多条件检索效果,简单展示数据同步和信息检索加速的过程和操作。
ElasticSearch 入门精讲
ElasticSearch是一个开源的、基于Lucene的、分布式、高扩展、高实时的搜索与数据分析引擎。根据DB-Engines的排名显示,Elasticsearch是最受欢迎的企业搜索引擎,其次是Apache Solr(也是基于Lucene)。 ElasticSearch的实现原理主要分为以下几个步骤: 用户将数据提交到Elastic Search 数据库中 通过分词控制器去将对应的语句分词,将其权重和分词结果一并存入数据 当用户搜索数据时候,再根据权重将结果排名、打分 将返回结果呈现给用户 Elasticsearch可以用于搜索各种文档。它提供可扩展的搜索,具有接近实时的搜索,并支持多租户。
目录
相关文章
|
算法 索引
阿里云 Elasticsearch 使用 RRF 混排优化语义查询结果对比
Elasticsearch 从8.8版本开始,新增 RRF,支持对多种不同方式召回的多个结果集进行综合再排序,返回最终的排序结果。之前 Elasticsearch 已经分别支持基于 BM25 的相关性排序和向量相似度的召回排序,通过 RRF 可以对这两者的结果进行综合排序,可以提升排序的准确性。
2252 0
|
15天前
|
缓存 监控 安全
Elasticsearch扩展和优化
【11月更文挑战第4天】
33 6
|
6月前
|
数据库 索引
Elasticsearch索引别名:管理与优化数据访问
Elasticsearch索引别名:管理与优化数据访问
|
7月前
|
运维 索引
Elasticsearch 写入优化探索:是什么影响了refresh 耗时?
Elasticsearch 写入优化探索:是什么影响了refresh 耗时?
76 7
|
7月前
|
存储 数据处理 索引
Elasticsearch 8.X 小技巧:使用存储脚本优化数据索引与转换过程
Elasticsearch 8.X 小技巧:使用存储脚本优化数据索引与转换过程
105 6
|
7月前
|
存储 缓存 搜索推荐
深入理解Elasticsearch倒排索引原理与优化策略
总之,Elasticsearch的倒排索引是其高效全文搜索的核心。为了提高性能和可伸缩性,Elasticsearch采用了多种优化策略,包括压缩、分片、合并、位集合和近实时搜索等。这些策略使Elasticsearch成为处理大规模文本数据的强大工具。
633 0
|
7月前
|
运维 测试技术 数据处理
Elasticsearch 优化查询中获取字段内容的方式,性能提升5倍!
Elasticsearch 优化查询中获取字段内容的方式,性能提升5倍!
68 0
|
7月前
|
监控 固态存储 安全
源码剖析:Elasticsearch 段合并调度及优化手段
源码剖析:Elasticsearch 段合并调度及优化手段
73 0
|
7月前
|
算法 搜索推荐 关系型数据库
Elasticsearch算分优化方案之rescore_query
Elasticsearch算分优化方案之rescore_query
150 0
|
7月前
|
存储 缓存 Java
ElasticSearch优化指南
ElasticSearch优化指南
333 1

相关产品

  • 检索分析服务 Elasticsearch版