StableDiffusion-04 (炼丹篇) 15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(一)

简介: StableDiffusion-04 (炼丹篇) 15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(一)

背景描述

接上一节的内容:

StableDiffusion-04 炼丹篇


请你确保:


已按照前几节完成了配置

已按照前几节正常运行

已按照前几节正常出图

上一节结尾:已经完成了对图片的打标签操作,接下来我们就要进行炼丹了!

上节说到:

从小就非常喜欢小樱!从小樱的动画到动漫书我都看了个遍,包括C妈几年前更新了(哇这么久了都)Clear Card。

直到最近C妈终于更新完了 Clear Card 的漫画,听说好像新的视频在筹备了,我好期待!!!

炼丹配置

按照我们上节的情况,我们打开:http://server:6006页面,请图文对比着一起配置。

由于我们是学习,所以按照图中可以跑起来是第一要义,不用调整太多了。


选择如下标签并配置

● Model-Pretrained model name or path: 基础模型的位置,如果没有将下载

● Model-Trained Model output name: 输出的模型名称

● Model-Image folder: 图片的上一级目录,(不要写到30_sakura这一级)

● Folders-Output directory for trained model: 训练完保存的目录

● Folders-Logging directory:日志的文件夹


详情如下图:

Paramters-基本配置默认即可(暂时先跑通)

Paramters-Text Encoder learning rate: 网上推荐 5e-5

● Paramters-No half VAE

● Paramters-Network Rank: 64

● Paramters-Network Alpha: 64

开始训练

完成上述的配置之后,我们点击按钮开始训练

页面上是不会有什么变化的,我们可以看后台的日志。过程中如果你是第一次运行,那你需要下载一部分模型。

可以看到下图,正在进行一些别的模型下载。

如果你加载模型顺利的话,你会看到如下的训练过程:

模型已经正常加载,一共19张图片epoch=1(默认配置的),一共570步训练,会显示着实时进度和预估完成的时间。

此时我们可以观察显卡的状态如下:

大约 13GB 的显存占用,所以底显卡跑的话,可能会遇到 OOM 的问题。

训练完毕

在经过漫长的等待之后··· 如果出现了如下图片的内容,那么恭喜你!已经成功练出了自己的第一炉丹!

上一节我们配置的保存目录是:

/root/autodl-tmp/kohya_ss/wzk_test

我的目录如下,你可以参考:

这个叫: wzk_lora_model.safetensors 便是我们的LoRA了,名字取决于你在配置中的名称。只要是.safetensors结尾即可。

接下篇:https://developer.aliyun.com/article/1621193

目录
相关文章
|
1月前
|
存储 自然语言处理 物联网
StableDiffusion-02 LoRA上手使用实测 尝试生成图片 使用多个LoRA 调整LoRA效果 10分钟上手 多图
StableDiffusion-02 LoRA上手使用实测 尝试生成图片 使用多个LoRA 调整LoRA效果 10分钟上手 多图
45 1
|
1月前
|
物联网
StableDiffusion-04 (炼丹篇) 15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(二)
StableDiffusion-04 (炼丹篇) 15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(二)
34 0
|
22天前
|
机器学习/深度学习 算法 物联网
大模型进阶微调篇(一):以定制化3B模型为例,各种微调方法对比-选LoRA还是PPO,所需显存内存资源为多少?
本文介绍了两种大模型微调方法——LoRA(低秩适应)和PPO(近端策略优化)。LoRA通过引入低秩矩阵微调部分权重,适合资源受限环境,具有资源节省和训练速度快的优势,适用于监督学习和简单交互场景。PPO基于策略优化,适合需要用户交互反馈的场景,能够适应复杂反馈并动态调整策略,适用于强化学习和复杂用户交互。文章还对比了两者的资源消耗和适用数据规模,帮助读者根据具体需求选择最合适的微调策略。
|
20天前
|
机器学习/深度学习 自然语言处理 数据格式
社区供稿 |【8卡从零训练Steel-LLM】微调探索与评估
本篇文章主要介绍下微调上的探索以及评估。另外,还特意试了试训练CMMLU数据集,能在榜单上提多少分
|
1月前
|
物联网
StableDiffusion-03 (准备篇)15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(二)
StableDiffusion-03 (准备篇)15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(二)
29 1
|
1月前
|
并行计算 Ubuntu 物联网
StableDiffusion-03 (准备篇)15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(一)
StableDiffusion-03 (准备篇)15分钟 部署服务并进行LoRA微调全过程详细记录 不到20张百变小樱Sakura微调 3090(24GB) 学不会你打我!(一)
29 0
|
2月前
Meta浙大校友让评估模型自学成才,数据全合成无需人工标注,训练Llama 3 70B超过405B
【9月更文挑战第21天】近日,一篇名为《Self-Taught Evaluators》的论文引起了广泛关注。该论文由Meta与浙江大学校友合作完成,提出一种创新的模型评估方法,通过让评估模型自学习训练,无需依赖昂贵且易过时的人工标注数据。此方法利用合成数据,通过迭代生成对比模型输出并训练基于大型语言模型的评估器,从而实现自我迭代改进。研究结果显示,在不使用任何标注偏好数据的情况下,这种方法显著提升了评估模型的性能,甚至超越了一些现有模型。尽管如此,该方法在实际应用中仍需进一步验证。论文地址:https://arxiv.org/abs/2408.02666
61 4
|
5月前
|
语音技术 计算机视觉
CVPR 2024 Highlight :北航等发布时间特征维护:无需训练,极致压缩加速Diffusion
【6月更文挑战第28天】在CVPR 2024会议上,北航等研究团队提出了**时间特征维护**技术,针对Diffusion模型实现无需训练的高效压缩与加速。通过选择性保留关键时间特征,他们在保持生成质量的同时,实现了模型4bit极致压缩和超过2.38倍硬件加速,简化了复杂模型,提升了运行效率。这一创新方法有望改善Diffusion模型在实际应用中的资源需求,但其鲁棒性和泛化能力尚需更多验证。[论文链接](https://arxiv.org/pdf/2311.16503)
58 5
|
5月前
|
机器学习/深度学习 自然语言处理 物联网
ICML 2024:脱离LoRA架构,训练参数大幅减少,新型傅立叶微调来了
【6月更文挑战第4天】在ICML 2024上,研究团队提出了傅立叶变换微调(FourierFT),一种减少训练参数的新方法,替代了依赖LoRA的微调。FourierFT通过学习权重变化矩阵的稀疏频谱系数,实现了LFMs的高效微调。在多项任务上,FourierFT展示出与LoRA相当或更优的性能,参数量却大幅减少,如在LLaMA2-7B模型上,仅需0.064M参数,对比LoRA的33.5M。广泛实验验证了其在NLP和CV任务上的效果,但未来还需探索其适用性和泛化能力。论文链接:[arxiv.org/abs/2405.03003](https://arxiv.org/abs/2405.03003)
106 0
|
6月前
|
机器学习/深度学习 并行计算 算法
模型压缩部署神技 | CNN与Transformer通用,让ConvNeXt精度几乎无损,速度提升40%
模型压缩部署神技 | CNN与Transformer通用,让ConvNeXt精度几乎无损,速度提升40%
145 0