【TCP/IP】UDP协议数据格式和报文格式

简介: 【TCP/IP】UDP协议数据格式和报文格式

学习一个网络协议,主要就是学习“数据格式”/“报文格式

源端口/目的端口

  • 端口号是属于传输层的概念
  • UDP 报头使用两个自己的长度来表示端口号
  • 之所以端口号的范围是 0~65535,是因为底层网络协议做出了强制要求
  • 如果使用一个 10 w 这样的端口,就会在系统底层被“截断”
  • UDP 并不关心后面的正文里面是什么数据,只需要关心报头里面是怎么组织的
  • 报头里面分为四个部分,每个部分固定是两个字节(16 bit),里面没有分隔符,就是通过固定长度来进行区分的

网络通信中,涉及到四个关键信息:源 IP/目的 IP源端口/目的端口

  • 源端口:发出数据报那个程序使用的端口号——>发件人电话
  • 目的端口:接受这个数据报的程序使用的端口号——>收件人电话
  • 源 IP:发出数据报那个程序的 IP——>发件人地址
  • 目的 IP:接受这个数据报的程序的 IP——>收件人地址

UDP报文长度

UDP报文长度:报头长度 + 载荷长度

  • 长度单位是字节,
  • 比如,报文长度 1024,——>整个 UDP 数据报就是 1024 字节;由于是两个字节来表示这个长度,所以最大值 65535——64 KB(65536/1024)
  • 64 KB 放在今天,是个很小的数字,所以如果使用 UDP 协议传输一个很大的数据,就会变得很麻烦

UDP 用了好多年,一直挺好用,但随着业务的发展,广告越来越多,越来越复杂,导致一个网络响应数据报的体积越来越大,逐渐逼近 64 KB。一旦数据超过了 64 KB,就可能到值数据被截断,这样广告可能就无法正常显示了。对于这样的情况,有两个解决方案:

  1. 把一个大的数据报,拆分成多个,分别进行传输
  • 很快就被否决了;因为实现分包、组包的过程非常复杂,充满了不确定性
  1. 直接使用 TCP
  • TCP 对于长度没有限制,其自身也带有可靠传输这样的机制,对于整体的通信质量来说也是有利的
  • 代码的修改成本比较低

校验和

前提:网络传输过程中,非常容易出现错误

  • 电信号/光信号/电磁波——>收到环境的干扰,使里面传输的信号发生改变

校验和存在的目的,就是为了能够“发现”或者“纠正”这里的错误。就可以给传输的数据中,引入“额外信息”,用来发现/纠正传输数据的错误

  • 这里的额外信息就是 checksum
  • 如果只是发现错误,需要携带的额外信息,就可以少一些(发现就会丢弃掉,不会让对方重发)
  • 如果是想要纠正错误,携带的额外信息就要更多(消耗更多带宽)

举个例子:你妈让你去买菜,西红柿、鸡蛋、茄子、晃过,最后补充一句“一共四样”

  • 这里的“一共四样”起到的作用就相当于是“校验和”。通过“一共四样”你可以对手里的菜进行检查,有没有买多、买少

但这样的“校验和”并不能准确的识别出问题,而且容易误判。所以我们希望校验和可以更严格地检查数据的内容,可以结合内容/内容的片段来生成校验和

  • 比如你在默写金庸先生的十五部作品的名称,写完后,你可以通过“飞雪连天射白鹿,笑书神侠倚碧鸳”这一幅对联和你写的书名的第一个字对一下,若能对象,就说名此处的名字都是正确的
  • 这样的校验和就是基于内容来进行校验的
  • 虽然出错的数据恰好没有被校验出来,这可情况也是可能会发生的
  • 但是一个良好的校验和算法,可以让上述问题发生的可能性非常低

CRC 校验和(循环冗余校验)

把 UDP 数据报整个数据都进行遍历,分别取出每个字节,往一个两个字节的变量上进行累加

  • 由于整个数据可能会很多,所以加着加着可能就结果溢出了,但溢出也没关系
  • 我们重点关心的不是最终加和是多少,而是校验和结果是否会在传输中发生改变

例如:我们去传输一个 UDP 数据报

  • 发送方整合整个 UDP 数据,基于这些数据,计算得到一个 checksum1
  • 接收方收到的数据:
  1. 数据的内容
  2. 校验和 checksum1
  • 接收方就可以根据数据的内容,按照同样的算法,再算一遍校验和,得到 checksum2
  • 如果传输的数据在网络通信过程中,没有发生任何改变,则一定有 checksum1 == checksum2

MD5 算法

本质上是一个“字符串 hash 算法”

特点

  1. 定长:无论输入的字符串长度多长,算出的 MD5 的结果都是固定长度——>适合做校验和算法
  2. 分散:输入的字符串哪怕只有一点点发生改变,得到的 MD5 的值都会相差很大——>适合做 hash 算法
  3. 不可逆:根据输入内容,计算 MD5 非常简单,但是如果想通过 MD5 值还原出原始的内容,理论上是不可行——>适合作为加密算法


相关文章
|
3天前
|
网络协议 网络安全 网络虚拟化
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算
本文介绍了十个重要的网络技术术语,包括IP地址、子网掩码、域名系统(DNS)、防火墙、虚拟专用网络(VPN)、路由器、交换机、超文本传输协议(HTTP)、传输控制协议/网际协议(TCP/IP)和云计算。通过这些术语的详细解释,帮助读者更好地理解和应用网络技术,应对数字化时代的挑战和机遇。
22 3
|
14天前
|
网络协议 安全 Go
Go语言进行网络编程可以通过**使用TCP/IP协议栈、并发模型、HTTP协议等**方式
【10月更文挑战第28天】Go语言进行网络编程可以通过**使用TCP/IP协议栈、并发模型、HTTP协议等**方式
43 13
|
8天前
|
网络协议 SEO
TCP连接管理与UDP协议IP协议与ethernet协议
TCP、UDP、IP和Ethernet协议是网络通信的基石,各自负责不同的功能和层次。TCP通过三次握手和四次挥手实现可靠的连接管理,适用于需要数据完整性的场景;UDP提供不可靠的传输服务,适用于低延迟要求的实时通信;IP协议负责数据包的寻址和路由,是网络层的重要协议;Ethernet协议定义了局域网的数据帧传输方式,广泛应用于局域网设备之间的通信。理解这些协议的工作原理和应用场景,有助于设计和维护高效可靠的网络系统。
19 4
|
15天前
|
网络协议 算法 网络性能优化
计算机网络常见面试题(一):TCP/IP五层模型、TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议
计算机网络常见面试题(一):TCP/IP五层模型、应用层常见的协议、TCP与UDP的区别,TCP三次握手、四次挥手,TCP传输可靠性保障、ARQ协议、ARP协议
|
1月前
|
网络协议 网络性能优化 C#
C# 一分钟浅谈:UDP 与 TCP 协议区别
【10月更文挑战第8天】在网络编程中,传输层协议的选择对应用程序的性能和可靠性至关重要。本文介绍了 TCP 和 UDP 两种常用协议的基础概念、区别及应用场景,并通过 C# 代码示例详细说明了如何处理常见的问题和易错点。TCP 适用于需要可靠传输和顺序保证的场景,而 UDP 适用于对延迟敏感且可以容忍一定数据丢失的实时应用。
28 1
|
1月前
|
网络协议 网络性能优化
详解TCP/IP协议以及UDP
详解TCP/IP协议以及UDP
46 0
|
2月前
|
存储 网络协议 算法
UDP 协议和 TCP 协议
本文介绍了UDP和TCP协议的基本结构与特性。UDP协议具有简单的报文结构,包括报头和载荷,报头由源端口、目的端口、报文长度和校验和组成。UDP使用CRC校验和来检测传输错误。相比之下,TCP协议提供更可靠的传输服务,其结构复杂,包含序列号、确认序号和标志位等字段。TCP通过确认应答和超时重传来保证数据传输的可靠性,并采用三次握手建立连接,四次挥手断开连接,确保通信的稳定性和完整性。
88 1
UDP 协议和 TCP 协议
|
20天前
|
网络协议 算法 网络性能优化
|
14天前
|
缓存 负载均衡 网络协议
面试:TCP、UDP如何解决丢包问题
TCP、UDP如何解决丢包问题。TCP:基于数据块传输/数据分片、对失序数据包重新排序以及去重、流量控制(滑动窗口)、拥塞控制、自主重传ARQ;UDP:程序执行后马上开始监听、控制报文大小、每个分割块的长度小于MTU
|
30天前
|
网络协议 前端开发 物联网
TCP和UDP区别?
本文首发于微信公众号“前端徐徐”,详细介绍了TCP和UDP两种传输层协议的核心概念、连接性和握手过程、数据传输和可靠性、延迟和效率、应用场景及头部开销。TCP面向连接、可靠、有序,适用于网页浏览、文件传输等;UDP无连接、低延迟、高效,适用于实时音视频传输、在线游戏等。
42 1
TCP和UDP区别?