Matplotlib 教程 之 Matplotlib 柱形图 4

简介: 本教程介绍如何使用 Matplotlib 的 `bar()` 方法绘制柱形图。通过设置 `x`、`height` 和 `width` 参数,可以自定义柱形图的位置、高度和宽度。还可以通过 `color` 属性设置不同柱形的颜色。示例展示了如何绘制带有不同颜色的柱形图。

Matplotlib 教程 之 Matplotlib 柱形图 4

Matplotlib 柱形图

我们可以使用 pyplot 中的 bar() 方法来绘制柱形图。

bar() 方法语法格式如下:

matplotlib.pyplot.bar(x, height, width=0.8, bottom=None, , align='center', data=None, *kwargs)

参数说明:

x:浮点型数组,柱形图的 x 轴数据。

height:浮点型数组,柱形图的高度。

width:浮点型数组,柱形图的宽度。

bottom:浮点型数组,底座的 y 坐标,默认 0。

align:柱形图与 x 坐标的对齐方式,'center' 以 x 位置为中心,这是默认值。 'edge':将柱形图的左边缘与 x 位置对齐。要对齐右边缘的条形,可以传递负数的宽度值及 align='edge'。

**kwargs::其他参数。

自定义各个柱形的颜色:

实例

import matplotlib.pyplot as plt
import numpy as np

x = np.array(["Baidu-1", "Baidu-2", "Baidu-3", "C-Baidu"])
y = np.array([12, 22, 6, 18])

plt.bar(x, y, color = ["#4CAF50","red","hotpink","#556B2F"])
plt.show()

目录
相关文章
|
1月前
|
Python
Matplotlib 教程 之 Matplotlib 散点图 6
使用 Matplotlib 库中的 `scatter()` 方法绘制散点图,并详细解释了该方法的参数,包括点的大小(`s`)、颜色(`c`)、样式(`marker`)等。此外,还展示了如何使用 `cmap` 参数设置颜色条,以及提供了一个具体的实例代码,演示了如何利用这些参数创建带有颜色渐变的散点图。
35 0
|
1月前
|
Python
Matplotlib 教程 之 Matplotlib 散点图 1
通过设置参数如点的大小(`s`)、颜色(`c`)和样式(`marker`)等,可以定制图表外观。示例展示了如何用两个长度相同的数组分别表示 x 和 y 轴的值来创建基本散点图。
43 12
|
1月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 饼图 3
使用 Matplotlib 的 `pie()` 方法绘制饼图,详细解释了 `pie()` 方法的参数,如 `x`、`labels`、`colors` 和 `autopct` 等,并提供了设置饼图标签和颜色的示例代码。饼图是一种常用的数据可视化图形,用于展示各部分在整体中的比例。`pie()` 方法可返回包含扇形、文本和自动生成文本标签的对象列表。
27 5
|
1月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 饼图 5
使用 Matplotlib 的 `pie()` 方法绘制饼图,通过参数设置(如颜色、标签和比例等),轻松展示各类别占比。示例代码展示了如何创建一个具有突出部分的彩色饼图并显示百分比。`pie()` 方法支持多种参数定制,包括阴影、旋转角度及文本属性等。
40 3
|
1月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 饼图 2
使用 Matplotlib 库中的 `pyplot` 模块 `pie()` 方法来创建饼图,并详细解释了 `pie()` 方法的各种参数,包括数据输入 `x`、扇区分离度 `explode`、标签 `labels`、颜色 `colors`、百分比格式 `autopct` 等,还说明了该方法可以返回包含扇形、文本和自动文本对象的列表。通过一个简单的示例展示了基本饼图的绘制过程。
27 4
|
1月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 饼图 4
使用 Matplotlib 的 `pie()` 方法绘制饼图,展示各部分占比。`pie()` 方法可通过多个参数定制图表样式,如颜色、标签和百分比显示格式等。通过实例演示了如何突出显示特定扇区并格式化百分比输出。
25 4
|
1月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 直方图 4
使用 Matplotlib 库中的 `hist()` 方法绘制直方图,该方法可用于展示数据分布情况,如中心趋势、偏态及异常值等。通过实例演示了如何设置柱子数量 (`bins` 参数) 并配置图形标题与坐标轴标签。`hist()` 方法接受多个参数以自定义图表样式,包括颜色、方向及是否堆叠等。
25 1
|
1月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 饼图 1
使用 Matplotlib 库中的 `pyplot` 模块 `pie()` 方法来绘制饼图,并详细解释了 `pie()` 方法的参数,包括数据输入 `x`、扇区间距 `explode`、标签 `labels`、颜色 `colors`、百分比格式 `autopct`、标签距离 `labeldistance`、阴影 `shadow`、半径 `radius`、起始角度 `startangle`、逆时针方向 `counterclock`、扇形属性 `wedgeprops`、文本标签属性 `textprops`、饼图中心位置 `center`
26 1
|
1月前
|
Python
Matplotlib 教程 之 Matplotlib 散点图 5
使用 Matplotlib 的 `scatter()` 方法绘制散点图,并详细解释了该方法的参数,如点的大小(`s`)、颜色(`c`)、样式(`marker`)等。通过一个实例展示了如何利用随机数生成数据点 (`x`, `y`) 及其颜色和面积,并设置了图表的标题。此示例代码展示了散点图的基本绘制方法及其参数配置。
30 2
|
1月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 散点图 7
使用 Matplotlib 的 `scatter()` 方法绘制散点图。该方法接受多个参数,如 x 和 y 数据点、点的大小(s)、颜色(c)和样式(marker)等。通过示例展示了如何利用颜色数组和颜色映射 (`cmap`) 来增强图表的表现力,并使用 `colorbar()` 方法添加颜色条,使数据可视化更加直观。
32 1