Appscan手工探索、手工测试功能实战

简介: Appscan手工探索、手工测试功能实战

通过手工探索(爬网)结合自动探索,实现更加精准的爬网效果  

AppScan手工探索是指在被动式扫描中,用户需要手动操作浏览器,以便产生出更多的流量,从而让AppScan能够更全面地扫描Web应用程序。具体步骤如下:

1.在AppScan中创建一个新的扫描任务,并选择被动式扫描模式。

2.配置浏览器代理,将浏览器的代理设置为AppScan的代理。

3.打开浏览器,访问Web应用程序,并进行一些常规操作,例如登录、搜索、添加商品等。

4.在AppScan中,选择“被动式扫描”选项卡,可以看到AppScan已经捕获了一些流量。

5.对于未被AppScan捕获的流量,可以手动将其添加到AppScan中。具体方法是,在AppScan中选择“手动添加请求”选项卡,然后将浏览器中的请求复制到AppScan中。

6.重复步骤3-5,直到产生出所有需要扫描的流量。

在AppScan中,选择“主动式扫描”选项卡,开始对Web应用程序进行扫描。

image.png image.png

image.png

image.png

Appscan手工测试

选中特定的HTTP链接


image.png

修改参数并点击发送.

image.png

查看手工测试的响应

image.png


相关文章
|
1月前
|
运维
【运维基础知识】用dos批处理批量替换文件中的某个字符串(本地单元测试通过,部分功能有待优化,欢迎指正)
该脚本用于将C盘test目录下所有以t开头的txt文件中的字符串“123”批量替换为“abc”。通过创建批处理文件并运行,可实现自动化文本替换,适合初学者学习批处理脚本的基础操作与逻辑控制。
134 56
|
6天前
|
JSON Java 测试技术
SpringCloud2023实战之接口服务测试工具SpringBootTest
SpringBootTest同时集成了JUnit Jupiter、AssertJ、Hamcrest测试辅助库,使得更容易编写但愿测试代码。
34 3
|
11天前
|
缓存 测试技术 Apache
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
告别卡顿!Python性能测试实战教程,JMeter&Locust带你秒懂性能优化💡
25 1
|
1月前
|
机器学习/深度学习 编解码 监控
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章详细介绍了如何使用YOLOv8进行目标检测任务,包括环境搭建、数据准备、模型训练、验证测试以及模型转换等完整流程。
1129 1
目标检测实战(六): 使用YOLOv8完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
15天前
|
前端开发 数据管理 测试技术
前端自动化测试:Jest与Cypress的实战应用与最佳实践
【10月更文挑战第27天】本文介绍了前端自动化测试中Jest和Cypress的实战应用与最佳实践。Jest适合React应用的单元测试和快照测试,Cypress则擅长端到端测试,模拟用户交互。通过结合使用这两种工具,可以有效提升代码质量和开发效率。最佳实践包括单元测试与集成测试结合、快照测试、并行执行、代码覆盖率分析、测试环境管理和测试数据管理。
31 2
|
16天前
|
前端开发 JavaScript 数据可视化
前端自动化测试:Jest与Cypress的实战应用与最佳实践
【10月更文挑战第26天】前端自动化测试在现代软件开发中至关重要,Jest和Cypress分别是单元测试和端到端测试的流行工具。本文通过解答一系列问题,介绍Jest与Cypress的实战应用与最佳实践,帮助开发者提高测试效率和代码质量。
27 2
|
1月前
|
机器学习/深度学习 监控 计算机视觉
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
本文介绍了如何使用YOLOv7进行目标检测,包括环境搭建、数据集准备、模型训练、验证、测试以及常见错误的解决方法。YOLOv7以其高效性能和准确率在目标检测领域受到关注,适用于自动驾驶、安防监控等场景。文中提供了源码和论文链接,以及详细的步骤说明,适合深度学习实践者参考。
294 0
目标检测实战(八): 使用YOLOv7完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 XML 并行计算
目标检测实战(七): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
这篇文章介绍了如何使用YOLOX完成图像目标检测任务的完整流程,包括数据准备、模型训练、验证和测试。
152 0
目标检测实战(七): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)
|
1月前
|
机器学习/深度学习 算法 PyTorch
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
本文详细介绍了使用YOLOv5-7.0版本进行目标检测的完整流程,包括算法介绍、环境搭建、数据集准备、模型训练、验证、测试以及评价指标。YOLOv5以其高精度、快速度和模型小尺寸在计算机视觉领域受到广泛应用。
387 0
目标检测实战(五): 使用YOLOv5-7.0版本对图像进行目标检测完整版(从自定义数据集到测试验证的完整流程)
|
1月前
|
缓存 数据挖掘 测试技术
目标检测实战(三):YOLO-Nano训练、测试、验证详细步骤
本文介绍了YOLO-Nano在目标检测中的训练、测试及验证步骤。YOLO-Nano是一个轻量级目标检测模型,使用ShuffleNet-v2作为主干网络,结合FPN+PAN特征金字塔和NanoDet的检测头。文章详细说明了训练前的准备、源代码下载、数据集准备、参数调整、模型测试、FPS测试、VOC-map测试、模型训练、模型测试和验证等步骤,旨在帮助开发者高效实现目标检测任务。
44 0
目标检测实战(三):YOLO-Nano训练、测试、验证详细步骤