【高阶数据结构】深度探索二叉树进阶:二叉搜索树概念及其高效实现(一)

简介: 【高阶数据结构】深度探索二叉树进阶:二叉搜索树概念及其高效实现

一、二叉搜索树概念

二叉搜索树又称二叉排序树,它或者是一棵空树,或者是具有以下性质的二叉树:

  • 若它的左子树不为空,则左子树上所有节点的值都小于根节点的值
  • 若它的右子树不为空,则右子树上所有节点的值都大于根节点的值
  • 它的左右子树也分别为二叉搜索树
  • 现阶段二叉搜索树没有重复的数据

二、二叉搜索树的创建

2.1 二叉搜索树的基本单位

template<class K>
    struct  BSTreeNode
    {
        BSTreeNode(const K& key = K())
            :_left(nullptr)
                , _right(nullptr)
                , _key(key)
            {}
        BSTreeNode<K>* _left;
        BSTreeNode<K>* _right;
        K _key;
    };

2.2 实现二叉搜索树的基本框架

template<class K>
    class  BSTree
    {
        public:
        //类型名字太长,不方便
        typedef BSTreeNode<K> Node;
        private:
        Node* _root = nullptr;
    };

上面图示以物理结构数组int a[] = {8, 3, 1, 10, 6, 4, 7, 14, 13}创建出来的逻辑结构二叉搜索树的数据结构。

2.3 二叉搜索树的查找

二叉搜索树查找步骤:

  • 规定一个关键值key
  • 从根开始开始比较查找,key比根大则往右边走查找,key比根小则往左边走查找
  • 最多查找高度次,走到到空,还没有找到,这值不存在
  • 在插入接口中,虽然查找合适位置代码逻辑差不多,但是存在个别逻辑差异,注意识别
bool Find(const K& key)
{
    Node* cur = _root->_key;
    while (cur)
    {
        if (key < cur->_key)
        {
            cur = cur->_left;
        }
        else if(key > cur->_key)
        {
            cur = cur->_right;
        }
        else
        {
            return true;
        }
    }
    return  false;
}

2.4 二叉搜索树的插入

插入具体过程:

  • 树为空,则直接新增节点,赋值给root指针
  • 树不为空,按二叉搜索树性质插入位置,插入新节点

bool Insert(const K& key)
{
    if (_root == nullptr)
    {
        _root = new Node(key);
        return true;
    }
    Node* parent = nullptr;
    //这里cur是临时变量
    Node* cur = _root;
    while (cur)
    {
        if (cur->_key < key)
        {
            parent = cur;
            cur = cur->_right;
        }
        else if (cur->_key > key)
        {
            parent = cur;
            cur = cur->_left;
        }
        else
        {
           return false;
        }
    }
    cur = new Node(key);
    if (parent->_key < key)
    {
        parent->_right = cur;
    }
    else if (parent->_key > key)
    {
        parent->_left = cur;
    }
    return true;
}

插入具体过程细节处理:

  • 需要判断树是否为空树,如果为空,创建节点赋值给_root
  • 创建两个指针parent和cur保证节点的连接
  • 通过不同比较大小,直到cur找到为空的位置,创建节点
  • 该节点需要满足二叉搜索树的特性,需要再次判断,选择连接

2.5 二叉搜索树的删除(难点)

2.5.1 删除该子树根节点情况分析

首先查找元素是否在二叉搜索树中,如果不存在则返回false,否则要删除的节点可能分为下面三种情况。先到需要被删除的节点,这里就不重复实现了。

删除节点情况划分:

  1. 要删除的节点无孩子节点
  2. 要删除的节点只有一个孩子节点
  3. 要删除的节点有左、右孩子节点

2.5.2 删除第一、二情况节点

这里第一种和第一种情况可以归类为同一种情况。无论被删除节点是否有无真实存在的孩子节点,都可以看成要删除的节点只有一个孩子节点,将第一种情况看成第二种情况,被删除节点有空孩子节点。

if (cur->_left == nullptr)
{
    if (parent->_left == cur)
    {
        parent->_left = cur->_right;
    }
    else if (parent->_right == cur)
    {
        parent->_right = cur->_right;
    }
    delete cur;
}
else if (cur->_right == nullptr)
{
    if (parent->_left == cur)
    {
        parent->_right = cur->_left;
    }
    else if (parent->_right == cur)
    {
        parent->_left = cur->_left;
    }
    delete cur;
}

关于数据结构学习,我们需要借助具体的逻辑结构去实现"抽象"的物理结构。接下我也希望你们可以借助图和文字进行对代码的解读。

  1. 第一个判断分支决定,parent指向另外一个可能为空的节点。

  1. 第二个分支判断被删除节点相对parent节点的位置

判断结束后,parent节点进行连接操作进行删除操作。

  1. 小总结:判断被删除节点位置与被删除节点可能不为空孩子位置,进行连接即可。

草稿说明,上面是优化版本说明:

有了上面两个信息的话,比如通过parent->_left == cur需要被删除的节点是左节点,并且cur->_left == nullptr该节点左孩子节点为空,那么parent->_left = cur->_right;parent->_left 是根据第一个条件,该parent->_left需要重新连接新节点,那么新节点是谁?通过cur->_left == nullptr判断,该左孩子为空,肯定连接右孩子节点。


【高阶数据结构】深度探索二叉树进阶:二叉搜索树概念及其高效实现(二)https://developer.aliyun.com/article/1617405

相关文章
|
6月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
178 10
 算法系列之数据结构-二叉树
|
6月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
180 22
|
6月前
|
C语言 C++ 容器
【数据结构】二叉搜索树(二叉排序树)
本文介绍了二叉搜索树(Binary Search Tree, BST)的定义、实现及其性能分析。二叉搜索树是一种特殊的二叉树,其特点是左子树所有节点值小于根节点值,右子树所有节点值大于根节点值,且每个子树也满足此特性。文中详细讲解了BST的节点结构、插入、查找、删除等操作的实现,并通过C++代码展示了这些功能。此外,还讨论了BST的性能:在理想情况下,时间复杂度接近O(logN),但在最坏情况下可能退化为O(N)。为了提高效率,后续将学习自平衡二叉搜索树如AVL树和红黑树。掌握BST有助于理解STL中的set和map容器。感谢阅读,欢迎点赞支持。
453 9
|
8月前
|
Java C++
【C++数据结构——树】二叉树的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现二叉树的基本运算。​ 相关知识 创建二叉树 销毁二叉树 查找结点 求二叉树的高度 输出二叉树 //二叉树节点结构体定义 structTreeNode{ intval; TreeNode*left; TreeNode*right; TreeNode(intx):val(x),left(NULL),right(NULL){} }; 创建二叉树 //创建二叉树函数(简单示例,手动构建) TreeNode*create
179 12
|
8月前
|
C++
【C++数据结构——树】二叉树的性质(头歌实践教学平台习题)【合集】
本文档介绍了如何根据二叉树的括号表示串创建二叉树,并计算其结点个数、叶子结点个数、某结点的层次和二叉树的宽度。主要内容包括: 1. **定义二叉树节点结构体**:定义了包含节点值、左子节点指针和右子节点指针的结构体。 2. **实现构建二叉树的函数**:通过解析括号表示串,递归地构建二叉树的各个节点及其子树。 3. **使用示例**:展示了如何调用 `buildTree` 函数构建二叉树并进行简单验证。 4. **计算二叉树属性**: - 计算二叉树节点个数。 - 计算二叉树叶子节点个数。 - 计算某节点的层次。 - 计算二叉树的宽度。 最后,提供了测试说明及通关代
161 10
|
8月前
|
存储 算法 测试技术
【C++数据结构——树】二叉树的遍历算法(头歌教学实验平台习题) 【合集】
本任务旨在实现二叉树的遍历,包括先序、中序、后序和层次遍历。首先介绍了二叉树的基本概念与结构定义,并通过C++代码示例展示了如何定义二叉树节点及构建二叉树。接着详细讲解了四种遍历方法的递归实现逻辑,以及层次遍历中队列的应用。最后提供了测试用例和预期输出,确保代码正确性。通过这些内容,帮助读者理解并掌握二叉树遍历的核心思想与实现技巧。
255 3
|
9月前
|
数据库
数据结构中二叉树,哈希表,顺序表,链表的比较补充
二叉搜索树,哈希表,顺序表,链表的特点的比较
数据结构中二叉树,哈希表,顺序表,链表的比较补充
|
10月前
|
机器学习/深度学习 存储 算法
数据结构实验之二叉树实验基础
本实验旨在掌握二叉树的基本特性和遍历算法,包括先序、中序、后序的递归与非递归遍历方法。通过编程实践,加深对二叉树结构的理解,学习如何计算二叉树的深度、叶子节点数等属性。实验内容涉及创建二叉树、实现各种遍历算法及求解特定节点数量。
251 4
|
10月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
215 59
|
3月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
44 0
栈区的非法访问导致的死循环(x64)