【C语言篇】深入理解指针3(附转移表源码)

简介: 【C语言篇】深入理解指针3(附转移表源码)

数组指针

什么是数组指针

【C语言篇】深入理解指针2我们学习了指针数组,指针数组是⼀种数组,数组中存放的是地址(指针)。

那数组指针变量是指针变量?还是数组? 答案是:指针变量。 我们已经熟悉:

  • 整形指针变量: int * pint 存放的是整形变量的地址,能够指向整形数据的指针。
  • 浮点型指针变量: float * pf 存放浮点型变量的地址,能够指向浮点型数据的指针。

那数组指针变量应该是:存放的应该是数组的地址,能够指向数组的指针变量。

下⾯代码哪个是数组指针变量?

int *p1[10];
int (*p2)[10];

思考⼀下:p1,p2分别是什么?

让我们先回顾一下操作符的优先级:

我们发现:[]的优先级高于*

有关操作符的内容在【C语言篇】操作符详解(上篇)以及【C语言篇】操作符详解(下篇)有很详细的介绍喔

int *p1[10];
int (*p2)[10];
  • 第一个p1先和[]结合,说明这是一个数组,存放的数据类型是int*的,这是指针数组
  • 第二个*和p2结合,说明这是一个指针,指向的元素类型是``int [10]`的,这是数组的类型,所以第二个是数组指针

其实所有指针都是类型加*以及指针名,按之前我们学的int*等类型的指针的习惯,其实这个数组指针应该是int [10] (*p),不过可能为了美观,就约定数组指针写成上面那种形式(接下来学函数指针也是这样)

数组指针变量的初始化

int arr[10] = {0};
&arr;//得到的就是数组的地址 

如果要存放个数组的地址,就得存放在数组指针变量中,如下:

int(*p)[10] = &arr;

我们调试也能看到 &arr 和 p 的类型是完全⼀致的。

数组指针类型进一步解析

int (*p) [10] = &arr;
 |   |     |
 |   |     |
 |   |   p指向数组的元素个数
 |   p是数组指针变量名
 p指向的数组的元素类型

二维数组传参的本质

有了数组指针的理解,我们就能够讲⼀下⼆维数组传参的本质了。

过去我们有⼀个⼆维数组的需要传参给⼀个函数的时候,我们是这样写的:

#include <stdio.h>
void test(int a[3][5], int r, int c)
{
    int i = 0;
    int j = 0;
    for(i=0; i<r; i++)
    {
        for(j=0; j<c; j++)
        {
            printf("%d ", a[i][j]);
        }
        printf("\n");
    }
}
int main()
{
    int arr[3][5] = {{1,2,3,4,5}, {2,3,4,5,6},{3,4,5,6,7}};
    test(arr, 3, 5);
    return 0;
}

这⾥实参是⼆维数组,形参也写成⼆维数组的形式,那还有什么其他的写法吗?

⾸先我们再次理解⼀下⼆维数组,⼆维数组其实可以看做是每个元素是⼀维数组的数组,也就是⼆维数组的每个元素是⼀个⼀维数组。那么⼆维数组的⾸元素就是第⼀⾏,是个⼀维数组。 如下图:

所以,根据数组名是数组⾸元素的地址这个规则,⼆维数组的数组名表⽰的就是第⼀⾏的地址,是⼀ 维数组的地址。根据上⾯的例⼦,第⼀⾏的⼀维数组的类型就是 int [5]所以第⼀⾏的地址的类型就是数组指针类型 int(*)[5] 。那就意味着⼆维数组传参本质上也是传递了地址,传递的是第⼀ ⾏这个⼀维数组的地址,那么形参也是可以写成指针形式的。如下:

#include <stdio.h>
void test(int (*p)[5], int r, int c)
{
    int i = 0;
    int j = 0;
    for(i=0; i<r; i++)
    {
        for(j=0; j<c; j++)
        {
            printf("%d ", *(*(p+i)+j));
        }
        printf("\n");
    }
}
int main()
{
    int arr[3][5] = {{1,2,3,4,5}, {2,3,4,5,6},{3,4,5,6,7}};
    test(arr, 3, 5);
    return 0;
}

总结:

⼆维数组传参,形参的部分可以写成数组,也可以写成指针形式。


函数指针

函数指针变量的创建

什么是函数指针变量呢? 根据前⾯学习整型指针,数组指针的时候,我们的类⽐关系,我们不难得出结论:

函数指针变量应该是⽤来存放函数地址的,未来通过地址能够调⽤函数的。

那么函数是否有地址呢?

我们做个测试:

#include <stdio.h>
void test()
{
    printf("hehe\n");
}
int main()
{
    printf("test: %p\n", test);
    printf("&test: %p\n", &test);
    return 0;
}

输出结果如下:

test: 005913CA
&test: 005913CA

确实打印出来了地址,所以函数是有地址的,函数名就是函数的地址,当然也可以通过 &函数名的⽅式获得函数的地址。

如果我们要将函数的地址存放起来,就得创建函数指针变量咯,函数指针变量的写法和数组指针⾮常类似。如下:

void test()
{
    printf("hehe\n");
}
void (*pf1)() = &test;
void (*pf2)()= test;
int Add(int x, int y)
{
    return x+y;
}
int(*pf3)(int, int) = Add;
int(*pf3)(int x, int y) = &Add;//x和y写上或者省略都是可以的 

函数指针类型解析:

int (*pf3) (int x, int y)
 |     |    ------------ 
 |     |           |
 |     |           pf3指向函数的参数类型和个数的交代
 |     函数指针变量名
 pf3指向函数的返回类型
 
 int (*) (int x, int y) //pf3函数指针变量的类型 

类比数组指针:

函数去除函数名就是类型,按照整型指针习惯应该是int (int , int) (*pf3),同样也是为了美观约定写成上述形式,括号也不能少

函数指针变量的使用

通过函数指针调用指针指向的函数

#include <stdio.h>
int Add(int x, int y)
{
    return x+y;
}
int main()
{
    int(*pf3)(int, int) = Add;
  //写成&Add都是一样的
    printf("%d\n", (*pf3)(2, 3));
    printf("%d\n", pf3(3, 5));
    return 0;
}

输出结果:

5
8

不同于数组,函数名和取函数的地址意义是完全一样的,所以这里:pf3 *pf3 Add &Add都是可以的


两端有趣的代码

代码1:

(*(void (*)())0)();

分析如下:

0前面是强制类型转换,类型是void(*)()这样的函数指针(这个函数指针指向一个返回值为空,参数为空的函数),将0转换为这样一个函数指针类型,就是我们把0当做这样一个函数的地址,然后解引用就是调用这个函数

这其实就是一个函数的调用

代码2:

void (*signal(int , void(*)(int)))(int);

分析如下:

先看signal()优先级更高,里面是参数,不难猜出signal是函数名,有两个参数,一个是int,另一个是void(*)(int)的函数指针,,那函数名有了,参数有了,剩下的就是返回值类型了,即为void (*)(int)的函数指针

这其实就是一个函数的定义

两段代码均出⾃:《C陷阱与缺陷》PDF下载(高清完整版) (biancheng.net)这本书

typedef 关键字

typedef是用来类型重命名的,可以将复杂的类型简单化

⽐如,你觉得 unsigned int 写起来不⽅便,如果能写成 uint 就⽅便多了,那么我们可以使⽤:

typedef unsigned int uint;
//将unsigned int 重命名为uint 

如果是指针类型,能否重命名呢?其实也是可以的,⽐如,将 int* 重命名为 ptr_t ,这样写:

typedef int* ptr_t;

但是对于数组指针和函数指针稍微有点区别:

⽐如我们有数组指针类型 int(*)[5] ,需要重命名为 parr_t ,那可以这样写:

typedef int(*parr_t)[5];

函数指针类型的重命名也是⼀样的,⽐如,将 void(*)(int) 类型重命名为 pf_t ,就可以这样写:

typedef void(*pfun_t)(int);//新的类型名必须在*的右边

那么要简化代码2,可以这样写:

typedef void(*pfun_t)(int);
pfun_t signal(int, pfun_t);

这样是不是就清楚多了😘


函数指针数组

数组是⼀个存放相同类型数据的存储空间,我们已经学习了指针数组,

int * arr[10];
//数组的每个元素是int* 

那要把函数的地址存到⼀个数组中,那这个数组就叫函数指针数组,那函数指针的数组如何定义呢?

int (*parr1[3])();
int *parr2[3]();
int (*)() parr3[3];

答案是:parr1

按照整型指针的习惯,其实parr3就是这样的,但是还是规定写成parr1这种形式,至于parr2,啥都不是😂

parr1 先和 [] 结合,说明parr1是数组,数组的内容是什么呢?

int (*)() 类型的函数指针。

转移表

函数指针数组的⽤途:转移表

举例:计算器的⼀般实现:

#include <stdio.h>
int add(int a, int b)
{
    return a + b;
}
int sub(int a, int b)
{
    return a - b;
}
int mul(int a, int b)
{
    return a * b;
}
int div(int a, int b)
{
    return a / b;
}
int main()
{
    int x, y;
    int input = 1;
    int ret = 0;
    do
    {
        printf("*************************\n");
        printf(" 1:add 2:sub \n");
        printf(" 3:mul 4:div \n");
        printf(" 0:exit \n");
        printf("*************************\n");
        printf("请选择:");
        scanf("%d", &input);
        switch (input)
        {
            case 1:
                printf("输⼊操作数:");
                scanf("%d %d", &x, &y);
                ret = add(x, y);
                printf("ret = %d\n", ret);
                break;
            case 2:
                printf("输⼊操作数:");
                scanf("%d %d", &x, &y);
                ret = sub(x, y);
                printf("ret = %d\n", ret);
                break;
            case 3:
                printf("输⼊操作数:");
                scanf("%d %d", &x, &y);
                ret = mul(x, y);
                printf("ret = %d\n", ret);
                break;
            case 4:
                printf("输⼊操作数:");
                scanf("%d %d", &x, &y);
                ret = div(x, y);
                printf("ret = %d\n", ret);
                break;
            case 0:
                printf("退出程序\n");
                break;
            default:
                printf("选择错误\n");
                break;
        }
    } while (input);
    return 0;
}
 

使用函数指针实现则可以极大简化:

  • 因为这几个函数都是int (int,int)类型的,可以使用函数指针数组来存储他们的地址
#include <stdio.h>
int add(int a, int b)
{
    return a + b;
}
int sub(int a, int b)
{
    return a - b;
}
int mul(int a, int b)
{
    return a*b;
}
int div(int a, int b)
{
    return a / b;
}
int main()
{
    int x, y;
    int input = 1;
    int ret = 0;
    int(*p[5])(int, int) = { 0, add, sub, mul, div }; //转移表 
    do
    {
        printf("*************************\n");
        printf(" 1:add 2:sub \n");
        printf(" 3:mul 4:div \n");
        printf(" 0:exit \n");
        printf("*************************\n");
        printf( "请选择:" );
        scanf("%d", &input);
        if ((input <= 4 && input >= 1))
        {
            printf( "输⼊操作数:" );
            scanf( "%d %d", &x, &y);
            ret = p[input](x, y);
            printf( "ret = %d\n", ret);
        }
        else if(input == 0)
        {
            printf("退出计算器\n");
        }
        else
        {
            printf( "输⼊有误\n" ); 
        }
    }while (input);
    return 0;
}
 

写在最后

C语言指针是一个重头戏,关于指针的内容会有4-5篇博客,敬请期待喔💕

以上就是关于深入理解指针3的内容啦,各位大佬有什么问题欢迎在评论区指正,您的支持是我创作的最大动力!❤️

目录
相关文章
|
16天前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
91 9
|
26天前
|
C语言
【c语言】指针就该这么学(1)
本文详细介绍了C语言中的指针概念及其基本操作。首先通过生活中的例子解释了指针的概念,即内存地址。接着,文章逐步讲解了指针变量的定义、取地址操作符`&`、解引用操作符`*`、指针变量的大小以及不同类型的指针变量的意义。此外,还介绍了`const`修饰符在指针中的应用,指针的运算(包括指针加减整数、指针相减和指针的大小比较),以及野指针的概念和如何规避野指针。最后,通过具体的代码示例帮助读者更好地理解和掌握指针的使用方法。
45 0
|
15天前
|
存储 搜索推荐 算法
【数据结构】树型结构详解 + 堆的实现(c语言)(附源码)
本文介绍了树和二叉树的基本概念及结构,重点讲解了堆这一重要的数据结构。堆是一种特殊的完全二叉树,常用于实现优先队列和高效的排序算法(如堆排序)。文章详细描述了堆的性质、存储方式及其实现方法,包括插入、删除和取堆顶数据等操作的具体实现。通过这些内容,读者可以全面了解堆的原理和应用。
58 16
|
11天前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
53 8
|
11天前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
42 7
|
9天前
|
C语言 Windows
C语言课设项目之2048游戏源码
C语言课设项目之2048游戏源码,可作为课程设计项目参考,代码有详细的注释,另外编译可运行文件也已经打包,windows电脑双击即可运行效果
21 1
|
15天前
|
C语言
【数据结构】二叉树(c语言)(附源码)
本文介绍了如何使用链式结构实现二叉树的基本功能,包括前序、中序、后序和层序遍历,统计节点个数和树的高度,查找节点,判断是否为完全二叉树,以及销毁二叉树。通过手动创建一棵二叉树,详细讲解了每个功能的实现方法和代码示例,帮助读者深入理解递归和数据结构的应用。
65 8
|
18天前
|
存储 C语言
【数据结构】手把手教你单链表(c语言)(附源码)
本文介绍了单链表的基本概念、结构定义及其实现方法。单链表是一种内存地址不连续但逻辑顺序连续的数据结构,每个节点包含数据域和指针域。文章详细讲解了单链表的常见操作,如头插、尾插、头删、尾删、查找、指定位置插入和删除等,并提供了完整的C语言代码示例。通过学习单链表,可以更好地理解数据结构的底层逻辑,提高编程能力。
45 4
|
19天前
|
存储 C语言
【数据结构】顺序表(c语言实现)(附源码)
本文介绍了线性表和顺序表的基本概念及其实现。线性表是一种有限序列,常见的线性表有顺序表、链表、栈、队列等。顺序表是一种基于连续内存地址存储数据的数据结构,其底层逻辑是数组。文章详细讲解了静态顺序表和动态顺序表的区别,并重点介绍了动态顺序表的实现,包括初始化、销毁、打印、增删查改等操作。最后,文章总结了顺序表的时间复杂度和局限性,并预告了后续关于链表的内容。
50 3
|
25天前
|
C语言
【c语言】指针就该这么学(3)
本文介绍了C语言中的函数指针、typedef关键字及函数指针数组的概念与应用。首先讲解了函数指针的创建与使用,接着通过typedef简化复杂类型定义,最后探讨了函数指针数组及其在转移表中的应用,通过实例展示了如何利用这些特性实现更简洁高效的代码。
15 2