Matplotlib 教程 之 Matplotlib 绘制多图 1

简介: 这段代码介绍了如何使用 Matplotlib 库中的 `subplot()` 方法在同一画布上绘制多个子图。通过指定行数(`nrows`)、列数(`ncols`)以及子图的位置序号(`index`),可以在一个整体图像中布局多个独立的图表。例如,`subplot(1, 2, 1)` 和 `subplot(1, 2, 2)` 分别指定了在一个 1 行 2 列的网格中的第一个和第二个位置。示例展示了如何创建两个子图,并分别为它们添加标题。

Matplotlib 教程 之 Matplotlib 绘制多图 1

Matplotlib 绘制多图

我们可以使用 pyplot 中的 subplot() 和 subplots() 方法来绘制多个子图。

subplot() 方法在绘图时需要指定位置,subplots() 方法可以一次生成多个,在调用时只需要调用生成对象的 ax 即可。

subplot
subplot(nrows, ncols, index, kwargs)
subplot(pos,
kwargs)
subplot(**kwargs)
subplot(ax)
以上函数将整个绘图区域分成 nrows 行和 ncols 列,然后从左到右,从上到下的顺序对每个子区域进行编号 1...N ,左上的子区域的编号为 1、右下的区域编号为 N,编号可以通过参数 index 来设置。

设置 numRows = 1,numCols = 2,就是将图表绘制成 1x2 的图片区域, 对应的坐标为:

(1, 1), (1, 2)
plotNum = 1, 表示的坐标为(1, 1), 即第一行第一列的子图。

plotNum = 2, 表示的坐标为(1, 2), 即第一行第二列的子图。

实例

import matplotlib.pyplot as plt
import numpy as np

plot 1:

xpoints = np.array([0, 6])
ypoints = np.array([0, 100])

plt.subplot(1, 2, 1)
plt.plot(xpoints,ypoints)
plt.title("plot 1")

plot 2:

x = np.array([1, 2, 3, 4])
y = np.array([1, 4, 9, 16])

plt.subplot(1, 2, 2)
plt.plot(x,y)
plt.title("plot 2")

plt.suptitle("Baidu subplot Test")
plt.show()

目录
相关文章
|
27天前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 10
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。Seaborn 支持多种图表类型,如散点图、折线图、柱状图、热图等,并特别强调视觉效果。例如,使用 `sns.violinplot()` 可以轻松绘制展示数据分布的小提琴图。
30 1
|
28天前
|
数据可视化 数据挖掘 Python
Matplotlib 教程 之 Seaborn 教程 8
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了简洁的高级接口和美观的默认样式,支持多种图表类型,如散点图、折线图、柱状图、热图等,特别适合于数据分析和展示。例如,使用 `sns.boxplot()` 可以轻松绘制箱线图,展示数据的分布情况。
35 3
|
27天前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 9
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制。它提供了高级接口和美观的默认主题,简化了复杂图形的生成过程。本文介绍了 Seaborn 的主要功能和绘图函数,包括热图 `sns.heatmap()` 的使用方法和示例代码。
17 1
|
1月前
|
数据可视化 Python
Matplotlib 教程 之 Seaborn 教程 2
Seaborn 是基于 Matplotlib 的 Python 数据可视化库,专注于统计图形的绘制,提供高级接口和美观的默认主题,支持散点图、折线图等多种图表类型,安装简便,可通过 `pip install seaborn` 完成。Seaborn 设计注重美观与易用性,内置多种主题如 darkgrid、whitegrid 等,便于用户快速生成高质量的统计图表。
18 3
|
1月前
|
Python
Matplotlib 教程 之 Matplotlib imread() 方法 4
Matplotlib 的 `imread()` 方法用于从文件中读取图像数据,返回一个包含图像信息的 numpy 数组。该方法支持灰度和彩色图像,可通过调整数组元素来修改图像颜色。示例中展示了如何将图像中的绿色和蓝色通道置零,从而显示红色图像。
15 1
|
1月前
|
Python
Matplotlib 教程 之 Matplotlib imsave() 方法 2
Matplotlib 教程 之 Matplotlib imsave() 方法 2
24 1
|
1月前
|
机器学习/深度学习 定位技术 Python
Matplotlib 教程 之 Matplotlib imshow() 方法 6
Matplotlib `imshow()` 方法教程:详解如何使用 `imshow()` 函数显示二维图像,包括灰度图、彩色图及不同插值方法的应用示例。通过调整参数如颜色映射(cmap)、插值方法(interpolation)等,实现图像的不同视觉效果。
24 2
|
1月前
|
定位技术 Python
Matplotlib 教程 之 Matplotlib imshow() 方法 1
《Matplotlib imshow() 方法教程》:本文介绍 Matplotlib 库中的 imshow() 函数,该函数常用于绘制二维灰度或彩色图像,也可用于展示矩阵、热力图等。文中详细解释了其语法及参数,例如颜色映射(cmap)、归一化(norm)等,并通过实例演示了如何使用 imshow() 显示灰度图像。
23 2
|
1月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 直方图 2
使用 Matplotlib 的 `hist()` 方法绘制直方图,通过实例展示了如何比较多组数据的分布。`hist()` 方法属于 Matplotlib 的 pyplot 子库,能有效展示数据分布特性,如中心趋势和偏态。示例中通过生成三组正态分布的随机数据并设置参数(如 bins、alpha 和 label),实现了可视化比较。
29 3
|
1月前
|
数据可视化 Python
Matplotlib 教程 之 Matplotlib 饼图 5
使用 Matplotlib 的 `pie()` 方法绘制饼图,通过参数设置(如颜色、标签和比例等),轻松展示各类别占比。示例代码展示了如何创建一个具有突出部分的彩色饼图并显示百分比。`pie()` 方法支持多种参数定制,包括阴影、旋转角度及文本属性等。
40 3

热门文章

最新文章