Python数据分析12

简介: OpenCV是由英特尔公司资助的开源计算机视觉库,集成了丰富的图像处理与计算机视觉算法,拥有超过500个函数,支持多种编程语言与操作系统。该库采用模块化设计,主要包括核心功能、图像处理、2D特征及GUI四个模块,广泛应用于产品检测、医学成像等多个领域。

3.OpenCV
OpenCV是一个开源计算机视觉库,由英特尔公司资助。OpenCV由一系列C函数和少量C++类组成,可实现很多图像和计算机视觉方面的通用算法。同时,OpenCV包含的函数有500多个,包括读取与写入图像、矩阵操作和数学库等函数,可以满足图像处理的许多应用领域,如工厂产品检测、医学成像、信息安全、摄像机标定、立体视觉和机器人视觉等。
OpenCV作为一个基于C/C++语言编写的跨平台开源软件,可以在Windows、Linux、Android、和macOS上运行,同时提供了Python、Ruby、MATLAB等语言的接口。
OpenCV是模块结构,主要包含以下4个模块。
<1>核心功能模块(core),包含OpenCV基本数据结构、动态数据结构、绘图函数、数组操作相关函数、与OpenGL的互操作等内容。
<2>图像处理模块(imgproc),包含线性和非线性的图像滤波、图像的几何变换、图像转换、直方图相关、结构分析和形状描述、运动分析和对象跟踪、特征检测、目标检测等内容。
<3>2维功能模块(features2D),包含特征检测和描述、特征检测器、描述符提取器、描述符匹配器、关键点绘制函数和匹配功能绘制函数等内容。
<4>高层GUI图形用户界面模块(highgui),包含媒体的输入/输出、视频捕捉、图像和视频的编码解码、图形交互界面的接口等内容。

目录
相关文章
|
1月前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
53 2
|
1月前
|
机器学习/深度学习 数据可视化 算法
使用Python进行数据分析:从零开始的指南
【10月更文挑战第9天】使用Python进行数据分析:从零开始的指南
37 1
|
15天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
43 0
|
9天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
21 2
|
16天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
30 2
|
21天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
24 2
|
7天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
7天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
9天前
|
数据采集 数据可视化 数据挖掘
使用Python进行数据分析和可视化
【10月更文挑战第33天】本文将介绍如何使用Python编程语言进行数据分析和可视化。我们将从数据清洗开始,然后进行数据探索性分析,最后使用matplotlib和seaborn库进行数据可视化。通过阅读本文,你将学会如何运用Python进行数据处理和可视化展示。
|
1月前
|
数据采集 数据可视化 数据挖掘
使用Python进行高效的数据分析
【10月更文挑战第9天】使用Python进行高效的数据分析
22 1