Python数据分析12

简介: OpenCV是由英特尔公司资助的开源计算机视觉库,集成了丰富的图像处理与计算机视觉算法,拥有超过500个函数,支持多种编程语言与操作系统。该库采用模块化设计,主要包括核心功能、图像处理、2D特征及GUI四个模块,广泛应用于产品检测、医学成像等多个领域。

3.OpenCV
OpenCV是一个开源计算机视觉库,由英特尔公司资助。OpenCV由一系列C函数和少量C++类组成,可实现很多图像和计算机视觉方面的通用算法。同时,OpenCV包含的函数有500多个,包括读取与写入图像、矩阵操作和数学库等函数,可以满足图像处理的许多应用领域,如工厂产品检测、医学成像、信息安全、摄像机标定、立体视觉和机器人视觉等。
OpenCV作为一个基于C/C++语言编写的跨平台开源软件,可以在Windows、Linux、Android、和macOS上运行,同时提供了Python、Ruby、MATLAB等语言的接口。
OpenCV是模块结构,主要包含以下4个模块。
<1>核心功能模块(core),包含OpenCV基本数据结构、动态数据结构、绘图函数、数组操作相关函数、与OpenGL的互操作等内容。
<2>图像处理模块(imgproc),包含线性和非线性的图像滤波、图像的几何变换、图像转换、直方图相关、结构分析和形状描述、运动分析和对象跟踪、特征检测、目标检测等内容。
<3>2维功能模块(features2D),包含特征检测和描述、特征检测器、描述符提取器、描述符匹配器、关键点绘制函数和匹配功能绘制函数等内容。
<4>高层GUI图形用户界面模块(highgui),包含媒体的输入/输出、视频捕捉、图像和视频的编码解码、图形交互界面的接口等内容。

目录
相关文章
|
5月前
|
数据挖掘 计算机视觉 Python
Python数据分析13
Pillow 是 PIL(Python Imaging Library)的升级版本,适应 Python 3 的更新而诞生,带来了诸多新特性。它采用模块化结构,主要包括:图像功能模块(Image)、图像滤波功能模块(ImageFilter)、图像增强功能模块(ImageEnhance)和图像绘画功能模块(ImageDraw)。Pillow 支持从多种图像格式读取数据,进行处理,并能输出为常见格式,其官网提供了丰富的应用示例供学习参考。
51 4
|
5月前
|
数据挖掘 Serverless 计算机视觉
Python数据分析 11
SciPy是一款专为数学、科学及工程应用设计的开源软件,它基于NumPy的n维数组构建,提供了丰富的数值例程,包括积分、优化、线性代数等,适用于各种操作系统,安装简易且免费。它还包含了如快速傅里叶变换、信号处理、图像处理、特殊函数计算等功能,满足了科学计算与工程需求。相较于NumPy的一般数组,SciPy提供了真正的矩阵及其相关运算支持。
46 7
|
5月前
|
机器学习/深度学习 数据挖掘 算法框架/工具
Python数据分析6
Keras是一个用Python编写的深度学习框架,支持TensorFlow等多种后端,以其高度模块化、用户友好性和易扩展性著称。它不仅适用于搭建普通神经网络,还能够构建自编码器、循环神经网络、卷积神经网络等多种模型,并且可以无缝切换CPU和GPU。相比Theano,Keras极大简化了神经网络模型的搭建过程,使普通用户也能轻松创建复杂的深度学习模型,仅需几十行代码即可完成。需要注意的是,Keras的预测函数采用`model.predict()`输出概率,`model.predict_classes()`输出分类结果。
45 6
|
6月前
|
数据可视化 数据挖掘 Unix
Python数据分析3
Matplotlib是由约翰·亨特在2008年发明的一款广泛应用于数据可视化的Python工具包,起初用于可视化癞痢病人的健康指标。它是一个功能强大的绘图库,主要擅长二维绘图,也支持简单的三维绘图。Matplotlib提供类似且更丰富的Matlab命令集,能够快速实现数据可视化,并支持高质量图像输出及多种格式。它适用于交互和非交互式绘图,兼容Linux、Windows、macOS和Solaris系统,并且便于嵌入GUI应用及Web框架如CGI、Flask、Django中,同时支持LaTeX公式插入,降低了从Matlab迁移的学习成本。
56 7
|
5月前
|
机器学习/深度学习 数据挖掘 PyTorch
Python数据分析7
PyTorch是由Facebook(现Meta)人工智能研究院于2017年开源的Python机器学习库,基于Torch构建,支持GPU加速和动态神经网络,适用于自然语言处理等领域。其灵活的API和简洁的语法使得构建和调试深度学习模型变得简单快捷,成为深度学习领域的热门工具之一。社区支持广泛,拥有丰富的应用领域库。
36 3
|
5月前
|
机器学习/深度学习 数据挖掘 TensorFlow
Python数据分析5
虽然scikit-learn功能强大,但对于人工神经网络这一重要模型却支持不足。人工神经网络在自然语言处理和图像识别等领域有着广泛应用,而深度学习作为其延伸,已成为研究热点。因此,在Python中实现神经网络变得尤为重要。目前主流的深度学习框架有TensorFlow、Keras、PyTorch、PaddlePaddle和Caffe等。其中,TensorFlow由Google于2015年推出,基于先前的深度学习基础框架DistBelief构建,因其高度灵活、可移植以及自动计算梯度导数等特点,迅速成为最受欢迎的深度学习框架之一,支持多种编程语言接口,如C++、Python、Java等。
33 2
|
5月前
|
机器学习/深度学习 并行计算 数据挖掘
Python数据分析8
飞桨(PaddlePaddle)是百度于2016年开源的一款学习框架,它以易用性、高效性、灵活性及可扩展性为特点,提供了涵盖核心深度学习框架、模型库、开发套件等在内的全面功能,并且支持大规模模型训练与多平台部署。此外,它不断优化性能,增强对各类硬件的支持,已在制造业、农业等多个领域广泛应用。
33 2
|
8月前
|
机器学习/深度学习 数据可视化 数据挖掘
Python数据分析工具有哪些
【7月更文挑战第3天】Python数据分析工具有哪些
243 58
|
6月前
|
数据采集 SQL 数据挖掘
Python数据分析2
Pandas,名称源于面板数据(panel data)和Python数据分析,由AQR Capital Management于2008年开发并于2009年底开源。作为Python核心数据分析库,它提供了快速、灵活的数据结构,简化了关系型和标记型数据处理。Pandas集成了高级数据结构和工具,适用于金融、统计等多个领域,支持高性能矩阵运算、数据挖掘、清洗及时间序列分析等功能,完美兼容其他科学计算库。主要数据结构包括一维的Series和二维的DataFrame。
54 0
|
10月前
|
监控 并行计算 数据挖掘
python数据分析中遇到的问题
在Python数据分析项目中,面对数十GB的日志数据,遇到性能瓶颈和内存溢出问题。通过使用`pandas`的`read_csv(chunksize=)`分块读取、`joblib`实现并行处理、优化数据类型及利用`engine=&#39;c&#39;`和`memory_map=True`减少内存占用,成功提升处理速度和效率。这次经历强调了预防性思考、持续学习、性能监控、代码优化和利用社区资源的重要性,促进了技术与思维方式的升级。
257 60