Python数据分析8

简介: 飞桨(PaddlePaddle)是百度于2016年开源的一款学习框架,它以易用性、高效性、灵活性及可扩展性为特点,提供了涵盖核心深度学习框架、模型库、开发套件等在内的全面功能,并且支持大规模模型训练与多平台部署。此外,它不断优化性能,增强对各类硬件的支持,已在制造业、农业等多个领域广泛应用。

4.Paddlepaddle
飞桨(PaddlePaddle)是一个易用、高效、灵活、可扩展的学习框架,于2016年正式向专业社区开源。PaddlePaddle是一个工业技术平台,拥有先进的技术和丰富的功能,涵盖了核心深度学习框架、基本模型库、端到端的端开发套件、工具、组件和服务平台。
除此之外,PaddlePaddle还支持超大规模深度学习模型的训练、多段多平台部署的高性能推理引擎等;支持命令式编程模式(动态图)功能、性能和体验;原生推理库性能显著优化,轻量级推理引擎实现了对硬件支持的极大覆盖;新增了CUDA下多线程多流支持、TRI子图对动态shape输入的支持,强化量化推理,性能显著优化;全面提升了对支持芯片的覆盖度(包括含五级、比特大陆等)以及对应的模型数量和性能。
PaddlePaddle院子工业实践,已被制造业、农业、企业服务等领域广泛采用。

目录
相关文章
|
20天前
|
机器学习/深度学习 数据采集 数据可视化
Python 数据分析:从零开始构建你的数据科学项目
【10月更文挑战第9天】Python 数据分析:从零开始构建你的数据科学项目
43 2
|
20天前
|
机器学习/深度学习 数据可视化 算法
使用Python进行数据分析:从零开始的指南
【10月更文挑战第9天】使用Python进行数据分析:从零开始的指南
34 1
|
30天前
|
数据采集 数据可视化 数据挖掘
Python中的数据分析:从零开始的指南
Python中的数据分析:从零开始的指南
45 2
|
28天前
|
数据采集 数据可视化 数据挖掘
基于Python的数据分析与可视化实战
本文将引导读者通过Python进行数据分析和可视化,从基础的数据操作到高级的数据可视化技巧。我们将使用Pandas库处理数据,并利用Matplotlib和Seaborn库创建直观的图表。文章不仅提供代码示例,还将解释每个步骤的重要性和目的,帮助读者理解背后的逻辑。无论你是初学者还是有一定基础的开发者,这篇文章都将为你提供有价值的见解和技能。
59 0
|
3天前
|
存储 数据挖掘 数据处理
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第26天】Python 是数据分析领域的热门语言,Pandas 库以其高效的数据处理功能成为数据科学家的利器。本文介绍 Pandas 在数据读取、筛选、分组、转换和合并等方面的高效技巧,并通过示例代码展示其实际应用。
14 1
|
8天前
|
数据采集 数据可视化 数据挖掘
R语言与Python:比较两种数据分析工具
R语言和Python是目前最流行的两种数据分析工具。本文将对这两种工具进行比较,包括它们的历史、特点、应用场景、社区支持、学习资源、性能等方面,以帮助读者更好地了解和选择适合自己的数据分析工具。
15 2
|
20天前
|
数据采集 数据可视化 数据挖掘
使用Python进行高效的数据分析
【10月更文挑战第9天】使用Python进行高效的数据分析
18 1
|
20天前
|
数据采集 机器学习/深度学习 数据挖掘
如何使用Python进行高效的数据分析
【10月更文挑战第9天】如何使用Python进行高效的数据分析
20 1
|
22天前
|
机器学习/深度学习 存储 数据挖掘
深入浅出:使用Python进行数据分析
【10月更文挑战第7天】本文将带你进入Python数据分析的世界,从基础的数据结构开始,逐步深入到数据处理、数据可视化以及机器学习等高级主题。我们将通过实际案例和代码示例,让你了解如何使用Python进行有效的数据分析。无论你是初学者还是有一定经验的开发者,都能从中获得新的知识和启发。
|
2天前
|
数据采集 存储 数据挖掘
Python数据分析:Pandas库的高效数据处理技巧
【10月更文挑战第27天】在数据分析领域,Python的Pandas库因其强大的数据处理能力而备受青睐。本文介绍了Pandas在数据导入、清洗、转换、聚合、时间序列分析和数据合并等方面的高效技巧,帮助数据分析师快速处理复杂数据集,提高工作效率。
11 0