JAVA并发编程系列(13)Future、FutureTask异步小王子

本文涉及的产品
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 本文详细解析了Future及其相关类FutureTask的工作原理与应用场景。首先介绍了Future的基本概念和接口方法,强调其异步计算特性。接着通过FutureTask实现了一个模拟外卖订单处理的示例,展示了如何并发查询外卖信息并汇总结果。最后深入分析了FutureTask的源码,包括其内部状态转换机制及关键方法的实现原理。通过本文,读者可以全面理解Future在并发编程中的作用及其实现细节。

美团本地生活面试:模拟外卖订单处理,客户支付提交订单后,查询订单详情,后台需要查询店铺备餐进度、以及外卖员目前位置信息后再返回。

    时间好快,一转眼不到一个月时间,已经完成分享synchronized、volatile、CAS、AQS、ReentrantLock、Semaphore、CountDownLatch、CyclicBarrier、并发锁、Condition、线程池、ThreadLocal等多个核心基础原理和案例剖析。

   其实我编写文章速度真的很慢,基本每篇文章需要写2~3个小时去梳理。确保基础理论、源码分析、面试案例、优缺点等均分享到位,力求每篇都是干货实用,让每位看到我文章的同学,不管是面试、还是应用到工作实践,都能有所收益。

   今天我们围绕Future是什么、怎么用,实践demo来展开分享,实现原理架构来展开。

一、Future是什么

     首先我们回到一个问题,就是为什么需要Future、FutureTask?

之前我们用过的线程池ThreadPoolExecutor、线程Thread都可以执行异步任务,但是无法执行带有返回值的异步任务。而Future是可以执行这种带有返回值的异步任务。线程池ThreadPoolExecutor、Thread线程可以通过提交执行Future类型的任务,就可以获取任务返回值。

     和Callable、Runnable一样,Future是一个接口。我们看一下它的接口源码。

//Runnable接口,只有一个run方法
@FunctionalInterface
public interface Runnable {
    public abstract void run();
}


//Callable接口,只有一个call方法
@FunctionalInterface
public interface Callable<V> {
    V call() throws Exception;
}


//本文主角Future有5个方法
public interface Future<V> {
    boolean cancel(boolean mayInterruptIfRunning);
    boolean isCancelled();
    boolean isDone();
    V get() throws InterruptedException, ExecutionException;
    V get(long timeout, TimeUnit unit)
        throws InterruptedException, ExecutionException, TimeoutException;
}

代码非常少,有5个方法,但是核心方法是get(),还是isDone();

get()方法:用来读取任务的返回结果。此外,如果任务未执行,调用该方法的当前线程会进入阻塞等待。

isDone()方法:检查计算是否已完成。这个方法不会阻塞线程。日常使用Future,一般是先调用isDone()方法判断结果是否返回,然后再调用get()方法获取执行结果。

一句话总结:Future是异步计算任务,提交Future任务后可以继续干别的;等干完别的事,再回来通过get()方法去读取Future任务结果

再简单总结:Future是支持在未来读取结果的异步计算任务。

cancel()方法:用来尝试取消任务,仅仅是尝试,不一定成功。如果任务已经开始执行,那么它就不能被取消。

isCancelled()方法:就是用来检查这个Future任务是否被取消。

      Future和之前分享的信号量Semaphore、CountDownLatch倒数门闩、CyclicBarrier循环屏障都不一样,唯一和Condition条件队列有点像,支持多个线程协调进行。支持异步读取任务结果这个特性,Future可以很方便支持多个任务并发执行,以及在最后汇总获取并发结果,最后返回给终端。


二、应用实践:模拟同时查外卖信息

我们用FutureTask实现一个并发面试题:模拟外卖订单处理,客户支付提交订单后,查询订单详情,后台需要查询店铺备餐进度、以及外卖员目前位置信息后再返回。


package lading.java.mutithread;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
/**
 * 模拟外卖订单处理,客户支付提交订单后,查询订单详情,后台
 * 通过查询店铺备餐进度、以及外卖员目前位置信息。
 */
public class Demo015Future {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        //1、异步查询商家系统任务
        FutureTask<Boolean> checkFoodIsReadyTask = new FutureTask<>(() -> {
            System.out.println(Thread.currentThread().getName()+"转发请求到商家系统,查询餐厅当前订单备餐进度...");
            Thread.sleep(2000);
            boolean foodIsOk = true;
            System.out.println(Thread.currentThread().getName()+"商家接口返回是否备餐完成,结果是:" + foodIsOk);
            return foodIsOk;
        });
        //2、异步查询外卖员系统任务
        FutureTask<Boolean> checkCourierIsReadyTask = new FutureTask<>(() -> {
            System.out.println(Thread.currentThread().getName()+"转发请求到外卖员系统,查询外卖员是否已到店...");
            Thread.sleep(800);
            boolean courierIsOk = true;
            System.out.println(Thread.currentThread().getName()+"查询外卖员是否已到店,结果是:" + courierIsOk);
            return courierIsOk;
        });
        //并发查询商家、外卖员情况,大约2s
        new Thread(checkFoodIsReadyTask).start();
        new Thread(checkCourierIsReadyTask).start();
        Thread.sleep(100);
        //只是判断是否完成,不会阻塞
        if (!checkFoodIsReadyTask.isDone()) {
            System.out.println(Thread.currentThread().getName() + "查询店铺备餐进度未完成,继续等等...");
        }
        if (!checkCourierIsReadyTask.isDone()) {
            System.out.println(Thread.currentThread().getName() + "查询外卖员情况未完成,继续等等...");
        }
        //如果结果没返回会阻塞等待
        System.out.println(Thread.currentThread().getName() + "线程 成功查到商家备餐结果:" + checkFoodIsReadyTask.get());
        System.out.println(Thread.currentThread().getName() + "线程 成功查到外卖员结果:" + checkCourierIsReadyTask.get());
    }
}

运行结果:


三、硬核干活:FutureTask的实现原理源码分析

    我们从它的属性开始,然后讲实现的方法原理。

3.1 FutureTask的属性

    FutureTask 的源码也不多,属性就这5个。

线程状态state、执行任务的callable,任务执行的返回结果outCome,正在运行的线程runner,等待队列里的waiters节点。

3.1.1 当前任务线程状态state,以及状态枚举

这七种任务状态之间相互转换关系:

1、正常结束  

NEW -> COMPLETING -> NORMAL

2、异常结束

NEW -> COMPLETING -> EXCEPTIONAL

3、任务被取消

NEW -> CANCELLED  

4、任务出现中断

NEW -> INTERRUPTING -> INTERRUPTED


//当前任务线程的状态,以下几个枚举值都是state不同状态
private volatile int state;
 
//当前任务线程刚创建状态
private static final int NEW          = 0;
//当前任务线程即将完成,ing是一个即将完成状态
private static final int COMPLETING   = 1;
//表示当前任务线程正常结束的状态
private static final int NORMAL       = 2;
//表示当前任务线程有异常
private static final int EXCEPTIONAL  = 3;
//表示当前任务线程被取消
private static final int CANCELLED    = 4;
//表示当前线程已经被打了中断标识
private static final int INTERRUPTING = 5;
//表示当前线程已经被中断
private static final int INTERRUPTED  = 6;

3.2 其他属性意义


//Callable 来执行任务,Callable 有返回值的线程
private Callable<V> callable;
 
//Callable任务执行的返回结果
private Object outcome; 
 
//当前正在运行的线程
private volatile Thread runner;
 
//等待队列节点,WaitNode是FutureTask的内部类
private volatile WaitNode waiters;

waiters等待队列:这个是单向队列,里面是等待本任务执行结果的线程。比如ABCD四个线程,其中A线程执行了任务,B、C、D线程,都等A线程的返回结果,就需要在waiters等待队列里等着。


//等待队列源码
    static final class WaitNode {
        //被阻塞的线程,也就
        volatile Thread thread;
        //这里看出它就是个单向队列
        volatile WaitNode next;
        WaitNode() { thread = Thread.currentThread(); }
    }

3.3 run()方法原理

   run方法比较简单,不放源码,直接说,就是执行定义的callable任务,任务执行完成后,通过CAS去更新outCome返回值。


protected void set(V v) {
        if (UNSAFE.compareAndSwapInt(this, stateOffset, NEW, COMPLETING)) {
            outcome = v;
            UNSAFE.putOrderedInt(this, stateOffset, NORMAL); // final state
            finishCompletion();
        }
    }

3.4 get()方法原理

  这个方法和run()一样重要,其他线程想要获取本任务结果,都是通过get方法读取。逻辑也是很简单。其中waitDone()方法,就是进入等待等列等结果。


public V get() throws InterruptedException, ExecutionException {
        int s = state;
        //1、如果任务没执行完成,当前想读取任务结果的线程就进入阻塞等待
        if (s <= COMPLETING)
            s = awaitDone(false, 0L);
        //2、如果任务执行完成,就返回结果    
        return report(s);
    }

3.5 其他方法

//当前任务状态是否被取消,直接读状态值
    public boolean isCancelled() {
        return state >= CANCELLED;
    }
    //当前任务状态是否以及执行结束,直接读状态值
    public boolean isDone() {
        return state != NEW;
    }

本系列文章推荐:

1、JAVA并发编程系列(12)ThreadLocal就是这么简单|建议收藏

2、JAVA并发编程系列(11)线程池底层原理架构剖析

相关文章
|
3天前
|
JSON Java Apache
非常实用的Http应用框架,杜绝Java Http 接口对接繁琐编程
UniHttp 是一个声明式的 HTTP 接口对接框架,帮助开发者快速对接第三方 HTTP 接口。通过 @HttpApi 注解定义接口,使用 @GetHttpInterface 和 @PostHttpInterface 等注解配置请求方法和参数。支持自定义代理逻辑、全局请求参数、错误处理和连接池配置,提高代码的内聚性和可读性。
|
4天前
|
存储 安全 Java
Java多线程编程的艺术:从基础到实践####
本文深入探讨了Java多线程编程的核心概念、应用场景及其实现方式,旨在帮助开发者理解并掌握多线程编程的基本技能。文章首先概述了多线程的重要性和常见挑战,随后详细介绍了Java中创建和管理线程的两种主要方式:继承Thread类与实现Runnable接口。通过实例代码,本文展示了如何正确启动、运行及同步线程,以及如何处理线程间的通信与协作问题。最后,文章总结了多线程编程的最佳实践,为读者在实际项目中应用多线程技术提供了宝贵的参考。 ####
|
1天前
|
监控 安全 Java
Java中的多线程编程:从入门到实践####
本文将深入浅出地探讨Java多线程编程的核心概念、应用场景及实践技巧。不同于传统的摘要形式,本文将以一个简短的代码示例作为开篇,直接展示多线程的魅力,随后再详细解析其背后的原理与实现方式,旨在帮助读者快速理解并掌握Java多线程编程的基本技能。 ```java // 简单的多线程示例:创建两个线程,分别打印不同的消息 public class SimpleMultithreading { public static void main(String[] args) { Thread thread1 = new Thread(() -> System.out.prin
|
3天前
|
存储 缓存 安全
在 Java 编程中,创建临时文件用于存储临时数据或进行临时操作非常常见
在 Java 编程中,创建临时文件用于存储临时数据或进行临时操作非常常见。本文介绍了使用 `File.createTempFile` 方法和自定义创建临时文件的两种方式,详细探讨了它们的使用场景和注意事项,包括数据缓存、文件上传下载和日志记录等。强调了清理临时文件、确保文件名唯一性和合理设置文件权限的重要性。
11 2
|
4天前
|
Java UED
Java中的多线程编程基础与实践
【10月更文挑战第35天】在Java的世界中,多线程是提升应用性能和响应性的利器。本文将深入浅出地介绍如何在Java中创建和管理线程,以及如何利用同步机制确保数据一致性。我们将从简单的“Hello, World!”线程示例出发,逐步探索线程池的高效使用,并讨论常见的多线程问题。无论你是Java新手还是希望深化理解,这篇文章都将为你打开多线程的大门。
|
5天前
|
安全 Java 测试技术
Java并行流陷阱:为什么指定线程池可能是个坏主意
本文探讨了Java并行流的使用陷阱,尤其是指定线程池的问题。文章分析了并行流的设计思想,指出了指定线程池的弊端,并提供了使用CompletableFuture等替代方案。同时,介绍了Parallel Collector库在处理阻塞任务时的优势和特点。
|
14天前
|
安全 Java
java 中 i++ 到底是否线程安全?
本文通过实例探讨了 `i++` 在多线程环境下的线程安全性问题。首先,使用 100 个线程分别执行 10000 次 `i++` 操作,发现最终结果小于预期的 1000000,证明 `i++` 是线程不安全的。接着,介绍了两种解决方法:使用 `synchronized` 关键字加锁和使用 `AtomicInteger` 类。其中,`AtomicInteger` 通过 `CAS` 操作实现了高效的线程安全。最后,通过分析字节码和源码,解释了 `i++` 为何线程不安全以及 `AtomicInteger` 如何保证线程安全。
java 中 i++ 到底是否线程安全?
|
1天前
|
安全 Java 开发者
深入解读JAVA多线程:wait()、notify()、notifyAll()的奥秘
在Java多线程编程中,`wait()`、`notify()`和`notifyAll()`方法是实现线程间通信和同步的关键机制。这些方法定义在`java.lang.Object`类中,每个Java对象都可以作为线程间通信的媒介。本文将详细解析这三个方法的使用方法和最佳实践,帮助开发者更高效地进行多线程编程。 示例代码展示了如何在同步方法中使用这些方法,确保线程安全和高效的通信。
15 9
|
4天前
|
Java
JAVA多线程通信:为何wait()与notify()如此重要?
在Java多线程编程中,`wait()` 和 `notify()/notifyAll()` 方法是实现线程间通信的核心机制。它们通过基于锁的方式,使线程在条件不满足时进入休眠状态,并在条件满足时被唤醒,从而确保数据一致性和同步。相比其他通信方式,如忙等待,这些方法更高效灵活。 示例代码展示了如何在生产者-消费者模型中使用这些方法实现线程间的协调和同步。
13 3