62.不同路径
一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。
机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。
问总共有多少条不同的路径?
- 输入:m = 3, n = 7
- 输出:28
示例 2:
- 输入:m = 2, n = 3
- 输出:3
解释: 从左上角开始,总共有 3 条路径可以到达右下角。
- 向右 -> 向右 -> 向下
- 向右 -> 向下 -> 向右
- 向下 -> 向右 -> 向右
示例 3:
- 输入:m = 7, n = 3
- 输出:28
示例 4:
- 输入:m = 3, n = 3
- 输出:6
提示:
- 1 <= m, n <= 100
- 题目数据保证答案小于等于 2 * 10^9
动态规划
机器人从(0,0)位置出发,到(m-1, n-1)终点。
按照动规五部曲来分析:
1、确定dp数组(dp table)以及小标的含义
dp[i][j]:表示从(0, 0)出发,到(i,j)有dp[i][j]条不同的路径。
2、确定递推公式
要想求dp[i][j],只能有两个方向来推导出来,即dp[i - 1][j] 和 dp[i][j - 1]。
此时在回顾一下 dp[i - 1][j] 表示啥,是从(0, 0)的位置到(i - 1, j)有几条路径,dp[i][j - 1]同理。
那么很自然,dp[i][j] = dp[i - 1][j] + dp[i][j - 1],因为dp[i][j]只有这两个方向过来。
3、dp数组的初始化
如何初始化呢,首先dp[i][0]一定都是1,因为从(0, 0)的位置到(i, 0)的路径只有一条,那么dp[0][j]也同理。
所以初始化代码为:
for (int i = 0; i < m; i++) dp[i][0] = 1; for (int j = 0; j < n; j++) dp[0][j] = 1;
4、确定遍历顺序
这里要看一下递推公式dp[i][j] = dp[i - 1][j] + dp[i][j - 1],dp[i][j]都是从其上方和左方推导而来,那么从左到右一层一层遍历就可以了。
这样就可以保证推导dp[i][j]的时候,dp[i - 1][j] 和 dp[i][j - 1]一定是有数值的。
5、举例推导dp数组
代码如下:
/** * 1. 确定dp数组下标含义 dp[i][j] 到每一个坐标可能的路径种类 * 2. 递推公式 dp[i][j] = dp[i-1][j] dp[i][j-1] * 3. 初始化 dp[i][0]=1 dp[0][i]=1 初始化横竖就可 * 4. 遍历顺序 一行一行遍历 * 5. 推导结果 。。。。。。。。 * * @param m * @param n * @return */ public static int uniquePaths(int m, int n) { int[][] dp = new int[m][n]; //初始化 for (int i = 0; i < m; i++) { dp[i][0] = 1; } for (int i = 0; i < n; i++) { dp[0][i] = 1; } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { dp[i][j] = dp[i-1][j]+dp[i][j-1]; } } return dp[m-1][n-1]; } //状态压缩 /** * 1. 确定dp数组下标含义 dp[i][j] 到每一个坐标可能的路径种类 * 2. 递推公式 dp[i][j] = dp[i-1][j] dp[i][j-1] * 3. 初始化 dp[i][0]=1 dp[0][i]=1 初始化横竖就可 * 4. 遍历顺序 一行一行遍历 * 5. 推导结果 。。。。。。。。 * * @param m * @param n * @return */ public static int uniquePaths(int m, int n) { int[][] dp = new int[m][n]; //初始化 for (int i = 0; i < m; i++) { dp[i][0] = 1; } for (int i = 0; i < n; i++) { dp[0][i] = 1; } for (int i = 1; i < m; i++) { for (int j = 1; j < n; j++) { dp[i][j] = dp[i-1][j]+dp[i][j-1]; } } return dp[m-1][n-1]; }