30天拿下Rust之输入输出

简介: 30天拿下Rust之输入输出

概述

在软件开发中,输入输出(I/O)是任何应用程序的基本构建模块。Rust作为一门注重安全和性能的语言,在其标准库中提供了强大的I/O功能。这些功能使得Rust程序员能够非常轻松地进行标准I/O、文件读写等操作。

标准I/O

在Rust中,标准输入通常通过std::io::Read trait实现,而标准输出则通过std::io::Write trait实现。这些trait被广泛应用在std::io模块提供的各种类型中,包括:std::io::Stdin、std::io::Stdout和std::io::Stderr。

读取标准输入

在Rust中,可以使用std::io::stdin()函数来获取标准输入流,并使用其read_line方法来读取一行文本。

在下面的示例代码中,我们首先创建了一个空的String来存储用户的输入。然后,我们使用println!宏来打印提示信息到标准输出。接着,我们调用io::stdin().read_line来读取用户输入的一行文本,并将其存储在input变量中。最后,我们使用println!宏来显示用户输入的内容。注意:read_line方法会保留输入的换行符,所以我们需要使用trim方法来移除它。

use std::io;
use std::io::Read;
 
fn main() -> io::Result<()> {
    let mut input = String::new();
    println!("please input: ");
    io::stdin().read_line(&mut input)?;
    println!("input text is: {}", input.trim());
    Ok(())
}

写入标准输出

在Rust中,写入标准输出通常使用println!宏或std::io::stdout().write方法。

在下面的示例代码中,我们首先定义了一个要输出的消息字符串。然后,我们获取标准输出流,并通过调用lock方法来获取一个互斥锁的句柄。这是因为多个线程可能同时尝试写入标准输出,所以我们需要同步访问。接着,我们使用write_all方法将消息和换行符写入输出流。最后,我们调用flush方法来确保所有待处理的输出都被发送到控制台。

use std::io;  
use std::io::Write;  
 
fn main() -> io::Result<()> {
    let text = "Hello World";
    let stdout = io::stdout();
    let mut handle = stdout.lock();
    handle.write_all(text.as_bytes())?;
    handle.write_all(b"\n")?;
    handle.flush()?;
 
    Ok(())  
}


std::io::Stderr的用法与std::io::Stdout类似,这里就不再赘述了。

文件读写

在Rust中,文件读写通常涉及std::fs模块,该模块提供了一系列用于文件操作的功能。在Rust 1.53.0版本之前,我们还可以使用std::io::util 模块进行文件读写。但从Rust 1.53.0版本开始,std::io::util 模块已被废弃,其功能已被直接集成到std::fs和std::io中。因此,现在推荐直接使用这些模块中的函数和方法来进行文件读写。

读取文件

要读取文件的内容,可以使用std::fs::File结构体和std::io::Read trait。

在下面的示例代码中,我们调用File::open方法打开文件。如果文件不存在或无法打开,它会返回一个错误。然后,我们使用BufReader来包装File对象,这样可以高效地从文件中读取数据。read_to_string方法读取整个文件内容到一个字符串中,如果读取失败,它会返回一个错误。最后,我们使用println!打印输出了文件内容。

use std::fs::File;
use std::io::{BufReader, Read};
use std::path::Path;
fn main() -> std::io::Result<()> {
    let path = Path::new("World.txt");
    let file = File::open(path)?;
    let mut reader = BufReader::new(file);
    let mut contents = String::new();
    reader.read_to_string(&mut contents)?;
    println!("content is: {}", contents);
    Ok(())  
}


写入文件

要写入文件,可以使用File::create或File::open带上适当的打开模式(比如:std::fs::OpenOptions)。

在下面的示例代码中,我们调用File::create方法创建一个新文件。如果文件已存在,则其内容会被清空。然后,我们使用write_all方法将字节切片写入文件。

use std::fs::File;
use std::io::Write;
fn main() -> std::io::Result<()> {
    let path = "World.txt";
    let mut file = File::create(path)?;
    let text = "Hello World\nHello 霸都";
    file.write_all(text.as_bytes())?;
    Ok(())
}


BufReader和BufWriter

BufReader和BufWriter是用于包装Read和Write接口的缓冲区结构,它们分别提供了带缓冲区的读取和写入功能。通过使用缓冲区,这些结构能够减少系统调用的次数,从而提高I/O效率,特别是在处理大量小数据块时。

BufReader

BufReader是std::io::BufReader的别名,它包装了一个实现了Read trait的对象,并在内部使用一个缓冲区来存储读取的数据。这使得连续读取操作更加高效,因为可以从内部缓冲区中快速获取数据,而不是每次都从底层对象中进行读取。

在下面的示例代码中,我们创建了一个大小为1024个字节的缓冲区,并使用BufReader的read方法来填充它。然后,我们处理读取到的数据,将其写入到标准输出。当read方法返回读取的字节数为0时,表示没有更多的数据可以读取,我们就退出循环。

use std::fs::File;
use std::io::BufReader;
use std::io;
use std::io::Read;
use std::io::Write;
use std::path::Path;
fn main() -> std::io::Result<()> {
    let path = Path::new("World.txt");
    let file = File::open(path)?;
    let mut reader = BufReader::new(file);
    let mut buffer = [0u8; 1024];
    let stdout = io::stdout();
    let mut handle = stdout.lock();
    while let Ok(size) = reader.read(&mut buffer) {
        if size == 0 {
            break;
        }
        handle.write_all(&buffer[..size])?;
    }
    Ok(())
}

BufWriter

与BufReader类似,BufWriter是std::io::BufWriter的别名,它包装了一个实现了Write trait的对象,并在内部使用一个缓冲区来存储待写入的数据。这样,当调用write或write_all方法时,数据首先被写入到内部缓冲区,直到缓冲区满或者显式地调用flush方法时,数据才会被写入到底层对象。

在下面的示例代码中,我们创建了一个BufWriter来包装File对象,并使用write_all方法将字符串写入到缓冲区。最后,我们调用flush方法来确保所有数据都被写入到文件中。在大多数情况下,不需要我们手动调用flush,因为当BufWriter对象被销毁时,其析构函数会自动调用flush。但是,在某些情况下,我们可能需要显式地刷新缓冲区以确保数据被立即写入。

use std::fs::File;
use std::io::BufWriter;
use std::io::Write;
fn main() -> std::io::Result<()> {
    let file = File::create("World.txt")?;
    let mut writer = BufWriter::new(file);
    let data = "Hello World";
    writer.write_all(data.as_bytes())?;
    writer.flush()?;
    Ok(())
}
相关文章
|
12天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
8天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2522 18
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
|
8天前
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
1525 15
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
|
4天前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
10天前
|
编解码 JSON 自然语言处理
通义千问重磅开源Qwen2.5,性能超越Llama
击败Meta,阿里Qwen2.5再登全球开源大模型王座
596 14
|
1月前
|
运维 Cloud Native Devops
一线实战:运维人少,我们从 0 到 1 实践 DevOps 和云原生
上海经证科技有限公司为有效推进软件项目管理和开发工作,选择了阿里云云效作为 DevOps 解决方案。通过云效,实现了从 0 开始,到现在近百个微服务、数百条流水线与应用交付的全面覆盖,有效支撑了敏捷开发流程。
19283 30
|
10天前
|
人工智能 自动驾驶 机器人
吴泳铭:AI最大的想象力不在手机屏幕,而是改变物理世界
过去22个月,AI发展速度超过任何历史时期,但我们依然还处于AGI变革的早期。生成式AI最大的想象力,绝不是在手机屏幕上做一两个新的超级app,而是接管数字世界,改变物理世界。
498 49
吴泳铭:AI最大的想象力不在手机屏幕,而是改变物理世界
|
1月前
|
人工智能 自然语言处理 搜索推荐
阿里云Elasticsearch AI搜索实践
本文介绍了阿里云 Elasticsearch 在AI 搜索方面的技术实践与探索。
18842 20
|
1月前
|
Rust Apache 对象存储
Apache Paimon V0.9最新进展
Apache Paimon V0.9 版本即将发布,此版本带来了多项新特性并解决了关键挑战。Paimon自2022年从Flink社区诞生以来迅速成长,已成为Apache顶级项目,并广泛应用于阿里集团内外的多家企业。
17530 13
Apache Paimon V0.9最新进展
|
3天前
|
云安全 存储 运维
叮咚!您有一份六大必做安全操作清单,请查收
云安全态势管理(CSPM)开启免费试用
368 4
叮咚!您有一份六大必做安全操作清单,请查收