30天拿下Rust之HashMap

简介: 30天拿下Rust之HashMap

概述

HashMap,被称为哈希表或散列表,是一种可以存储键值对的数据结构。它使用哈希函数将键映射到存储位置,以便可以快速检索和更新元素。这种数据结构在许多编程语言中都存在,而在Rust中,它被实现为HashMap<K, V>。其中,K表示键的类型,V表示值的类型。HashMap以哈希表为基础实现,允许我们在常数平均时间复杂度内完成插入、删除和查找操作。

HashMap的创建

Rust标准库中提供了std::collections::HashMap<K, V>,这是一个关联数组或映射。其中,K是键类型,必须实现Eq和Hash traits以确保键的唯一性和能够进行哈希计算。V是值类型,可以是任何Rust支持的类型。

每个键都会通过哈希函数转化为一个索引,并以此存储对应的值,从而使得通过键快速定位到值成为可能。当两个不同的键通过哈希函数得到相同的索引时,会发生“哈希冲突”。此时,HashMap会通过开放寻址法或者链地址法等策略来解决这个问题。

要使用HashMap,必须先引入std::collections::HashMap模块。新建HashMap,主要有以下几种方式。

1、使用new函数创建一个新的、空的HashMap。

use std::collections::HashMap;
fn main() {
    // 创建一个空的HashMap,键类型为String,值类型为i32
    let mut map_fruit: HashMap<String, i32> = HashMap::new();
   
    // 插入一些键值对
    map_fruit.insert("Lemon".to_string(), 66);
    map_fruit.insert("Apple".to_string(), 99);
    // 输出:{"Lemon": 66, "Apple": 99}
    println!("{:?}", map_fruit);
}


2、新建带有元素的HashMap。通过传入一个键值对的集合(比如:数组、切片或迭代器),我们可以在创建HashMap的同时初始化它。这可以通过collect方法来实现,它通常与vec!宏或数组字面量一起使用,以创建包含(key, value)元组的集合。在下面的示例代码中,我们首先创建了一个HashMap。它的键是String类型,值是i32类型。然后,我们使用vec!宏创建了一个包含三个(key, value)元组的向量,并使用into_iter方法将其转换为迭代器。最后,我们使用collect方法将其收集到一个HashMap中。

use std::collections::HashMap;
fn main() {
    let map_fruit: HashMap<String, i32> = vec![
        ("Lemon".to_string(), 66),  
        ("Apple".to_string(), 99)].into_iter().collect();
   
    // 输出:{"Lemon": 66, "Apple": 99}
    println!("{:?}", map_fruit);
}


3、HashMap::from是一个创建HashMap的便捷方法,主要用于从实现了IntoIterator特征且迭代器产出元组 (K, V) 的类型创建一个HashMap。

use std::collections::HashMap;
fn main() {
    let pairs = [("Lemon".to_string(), 66), ("Apple".to_string(), 99)];
    let map_fruit = HashMap::from(pairs);
    // 输出:{"Lemon": 66, "Apple": 99}
    println!("{:?}", map_fruit);
}


4、使用with_capacity函数创建预先分配指定容量的HashMap。注意:预设容量只是预留空间,实际使用的数量会根据插入的键值对自动增长。

use std::collections::HashMap;
fn main() {
    // 创建一个初始容量为5的HashMap
    let mut map_fruit: HashMap<String, i32> = HashMap::with_capacity(5);
   
    // 插入一些键值对
    map_fruit.insert("Lemon".to_string(), 66);
    map_fruit.insert("Apple".to_string(), 99);
    // 输出:{"Lemon": 66, "Apple": 99}
    println!("{:?}", map_fruit);
}


HashMap的访问

HashMap是一个存储键值对的数据结构,并且可以通过键来快速检索值。为了访问HashMap中的值,我们可以使用get方法或get_mut方法,具体取决于是否需要获取值的可变引用。

1、get方法用于获取与给定键相关联的值的不可变引用。如果键存在于HashMap中,get将返回Some(value),其中value是与该键相关联的值的引用。如果键不存在,它将返回None。

use std::collections::HashMap;
fn main() {
    let mut map_fruit = HashMap::new();
    map_fruit.insert("Lemon".to_string(), 66);
    map_fruit.insert("Apple".to_string(), 99);
    // 访问存在的键
    if let Some(value) = map_fruit.get("Apple") {
        println!("found value: {}", value);
    } else {
        println!("not found");
    }
 
    // 访问不存在的键
    if let Some(value) = map_fruit.get("Peach") {
        println!("found value: {}", value);
    } else {
        println!("not found");
    }
}



2、如果我们需要获取值的可变引用以便修改它,则应该使用get_mut方法。与get方法类似,如果键存在于HashMap中,get_mut将返回Some(&mut value),其中&mut value是与该键相关联的值的可变引用。如果键不存在,它将返回None。

use std::collections::HashMap;
fn main() {
    let mut map_fruit = HashMap::new();
    map_fruit.insert("Lemon".to_string(), 66);
    map_fruit.insert("Apple".to_string(), 99);
    // 访问存在的键
    if let Some(value) = map_fruit.get_mut("Apple") {
        *value = 100;
    } else {
        println!("not found");
    }
    // 输出:{"Apple": 100, "Lemon": 66}
    println!("{:?}", map_fruit);
 
    // 访问不存在的键
    if let Some(value) = map_fruit.get_mut("Peach") {
        println!("found value: {}", value);
    } else {
        println!("not found");
    }
}



HashMap的修改

1、插入新键值对。如果键不存在,使用insert方法将添加一个新的键值对。如果键已经存在,则会替换原有的值。

use std::collections::HashMap;
fn main() {
    // 创建一个空的HashMap,键类型为String,值类型为i32
    let mut map_fruit: HashMap<String, i32> = HashMap::new();
   
    // 插入一些键值对
    map_fruit.insert("Lemon".to_string(), 66);
    map_fruit.insert("Apple".to_string(), 99);
    // 输出:{"Lemon": 66, "Apple": 99}
    println!("{:?}", map_fruit);
}


2、如果需要根据键是否存在来执行不同的操作(比如:只在键不存在时插入值,或者在键存在时更新值),可以使用entry API。这提供了更细粒度的控制,并避免了不必要的查找。entry方法会根据键是否存在返回一个Entry枚举;or_insert方法会在键不存在时插入给定的值,并返回键的值的可变引用;and_modify方法会修改现有的值。

use std::collections::HashMap;
fn main() {
    let mut map_fruit = HashMap::new();
    map_fruit.insert("Lemon".to_string(), 66);
    map_fruit.insert("Apple".to_string(), 99);
    // 使用entry API插入新的键值对,并修改值为原来的2倍
    map_fruit.entry("Peach".to_string()).or_insert(256);
    map_fruit.entry("Peach".to_string()).and_modify(|v| *v *= 2);
    // 输出: {"Peach": 512, "Lemon": 66, "Apple": 99}
    println!("{:?}", map_fruit);
}


13.

3、使用remove方法可以移除指定键的键值对。当我们调用remove方法并传入一个键时,如果该键存在于HashMap中,它会返回与该键相关联的值,并从HashMap中删除该键值对。如果键不存在,会返回None。

use std::collections::HashMap;
fn main() {
    let mut map_fruit = HashMap::new();
    map_fruit.insert("Lemon".to_string(), 66);
    map_fruit.insert("Apple".to_string(), 99);
    // 尝试删除并获取"Lemon"的值,会成功
    if let Some(value) = map_fruit.remove("Lemon") {
        println!("{} removed", value);
    } else {
        println!("not found");
    }
    // 尝试删除并获取"Peach"的值,会失败
    if let Some(value) = map_fruit.remove("Peach") {
        println!("{} removed", value);
    } else {
        println!("not found");
    }
    // 输出: {"Apple": 99}
    println!("{:?}", map_fruit);
}



HashMap的遍历

在Rust中,我们可以使用多种方式来遍历HashMap,包括:遍历所有的键、遍历所有的值、同时遍历键和值。

1、遍历所有的键。我们可以使用keys()方法来获取一个包含所有键的迭代器,并遍历它们。

use std::collections::HashMap;
fn main() {
    let pairs = [("Lemon".to_string(), 66), ("Apple".to_string(), 99)];
    let map_fruit = HashMap::from(pairs);
    // 分别输出:Lemon Apple
    for key in map_fruit.keys() {
        println!("{}", key);
    }
}


2、遍历所有的值。我们可以使用values()方法来获取一个包含所有值的迭代器,并遍历它们。

use std::collections::HashMap;
fn main() {
    let pairs = [("Lemon".to_string(), 66), ("Apple".to_string(), 99)];
    let map_fruit = HashMap::from(pairs);
    // 分别输出:99 66
    for value in map_fruit.values() {
        println!("{}", value);
    }
}


3、同时遍历键和值。如果需要同时访问键和值,我们可以使用iter()方法,它会返回一个包含键值对引用的迭代器。

use std::collections::HashMap;
fn main() {
    let pairs = [("Lemon".to_string(), 66), ("Apple".to_string(), 99)];
    let map_fruit = HashMap::from(pairs);
    // 分别输出:Apple: 99 Lemon: 66
    for (key, value) in map_fruit.iter() {
        println!("{}: {}", key, value);
    }
}


4、遍历并修改值。如果需要遍历HashMap并修改其中的值,我们可以使用iter_mut()方法,它会返回一个包含可变键值对引用的迭代器。注意:当使用iter_mut()方法时,不能有其他对HashMap或其任何元素的可变引用。因为Rust的借用规则要求:在同一时间,变量只能有一个可变引用存在。

use std::collections::HashMap;
fn main() {
    let pairs = [("Lemon".to_string(), 66), ("Apple".to_string(), 99)];
    let mut map_fruit = HashMap::from(pairs);
    // 修改值为原来的10倍
    for (key, value) in map_fruit.iter_mut() {
        *value *= 10;  
    }
    // 分别输出:Lemon: 660 Apple: 990
    for (key, value) in map_fruit.iter() {
        println!("{}: {}", key, value);
    }
}



HashMap的所有权

在Rust中,use std::collections::HashMap;

fn main() {

   let mut map = HashMap::new();

   let number: i32 = 66;

   map.insert("Lemon", number);

 

   // 这里仍可以继续使用number,因为复制了一份

   println!("{}", number);

}HashMap对插入其中的键值对的所有权规则,遵循Rust语言的核心所有权原则。这意味着,当我们将一个值放入HashMap时,会根据值的类型决定所有权如何转移。

1、复制所有权。对于实现了Copy特征的类型(比如:整数、浮点数等基本类型),插入HashMap时不会发生所有权转移,而是进行值的复制。

use std::collections::HashMap;
fn main() {
    let mut map = HashMap::new();
    let number: i32 = 66;
    map.insert("Lemon", number);
   
    // 这里仍可以继续使用number,因为复制了一份
    println!("{}", number);
}



2、转移所有权。如果插入到HashMap中的值是不可复制的类型(比如:String或自定义结构体),那么当调用insert方法时,该值的所有权会被转移给HashMap。这意味着,原变量将不再有效,并且不能再被使用。

use std::collections::HashMap;
fn main() {
    let mut map = HashMap::new();
    let peach = String::from("Peach");
    // peach的所有权转移到了HashMap中
    map.insert("Fruit", peach);
   
    // 这里访问peach会导致编译错误,因为它已经不再拥有所有权
    // println!("{}", peach);
}


3、引用所有权。如果想要存储指向数据的引用,而不是数据本身,可以使用引用类型(比如:&str或&T)。但是,引用的生命周期必须与引用的对象保持一致,确保在整个引用存在期间,对象也依然有效。

use std::collections::HashMap;
fn main() {
    let text = String::from("World");
    let mut map = HashMap::new();
    map.insert("Hello", &text);
    // text必须一直有效,因为HashMap持有对它的引用
相关文章
|
12天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
8天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2522 18
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
|
8天前
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
1525 15
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
|
4天前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。
|
10天前
|
编解码 JSON 自然语言处理
通义千问重磅开源Qwen2.5,性能超越Llama
击败Meta,阿里Qwen2.5再登全球开源大模型王座
596 14
|
1月前
|
运维 Cloud Native Devops
一线实战:运维人少,我们从 0 到 1 实践 DevOps 和云原生
上海经证科技有限公司为有效推进软件项目管理和开发工作,选择了阿里云云效作为 DevOps 解决方案。通过云效,实现了从 0 开始,到现在近百个微服务、数百条流水线与应用交付的全面覆盖,有效支撑了敏捷开发流程。
19283 30
|
10天前
|
人工智能 自动驾驶 机器人
吴泳铭:AI最大的想象力不在手机屏幕,而是改变物理世界
过去22个月,AI发展速度超过任何历史时期,但我们依然还处于AGI变革的早期。生成式AI最大的想象力,绝不是在手机屏幕上做一两个新的超级app,而是接管数字世界,改变物理世界。
498 49
吴泳铭:AI最大的想象力不在手机屏幕,而是改变物理世界
|
1月前
|
人工智能 自然语言处理 搜索推荐
阿里云Elasticsearch AI搜索实践
本文介绍了阿里云 Elasticsearch 在AI 搜索方面的技术实践与探索。
18842 20
|
1月前
|
Rust Apache 对象存储
Apache Paimon V0.9最新进展
Apache Paimon V0.9 版本即将发布,此版本带来了多项新特性并解决了关键挑战。Paimon自2022年从Flink社区诞生以来迅速成长,已成为Apache顶级项目,并广泛应用于阿里集团内外的多家企业。
17530 13
Apache Paimon V0.9最新进展
|
3天前
|
云安全 存储 运维
叮咚!您有一份六大必做安全操作清单,请查收
云安全态势管理(CSPM)开启免费试用
368 4
叮咚!您有一份六大必做安全操作清单,请查收