CUDA编程一天入门

简介: 本文介绍了CUDA编程的基础知识,包括环境准备、编程模型、内核设置、示例代码simpleTexture3D,以及相关参考链接。

0 环境准备

1 套路

CUDA 编程模型是一个异构模型,其中同时使用 CPU 和 GPU。在 CUDA 中,主机是指 CPU 及其内存,而设备是指 GPU 及其内存。在主机上运行的代码可以管理主机和设备上的内存,还可以启动内核,内核是在设备上执行的功能。这些内核由许多 GPU 线程并行执行。

鉴于 CUDA 编程模型的异构性质,CUDA C 程序的典型操作顺序是:

  1. 声明并分配主机和设备内存。
  2. 初始化主机数据。
  3. 将数据从主机传输到设备。
  4. 执行一个或多个内核。
  5. 将结果从设备传输到主机。

2 并行执行内核设置

三重 V 形之间的信息是执行配置,它指示并行执行内核的设备线程数。在 CUDA 中,软件中有一个线程层次结构,它模仿线程处理器在 GPU 上的分组方式。在 CUDA 编程模型中,我们谈到启动带有线程块**网格的内核。执行配置中的第一个参数指定网格中的线程块数,第二个参数指定线程块中的线程数。

int blockSize = 256;
int numBlocks = (N + blockSize - 1) / blockSize;
add<<<numBlocks, blockSize>>>(N, x, y);

3 示例代码simpleTexture3D

/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of NVIDIA CORPORATION nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
  3D texture sample

  This sample loads a 3D volume from disk and displays slices through it
  using 3D texture lookups.
*/

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <helper_gl.h>

#if defined(__APPLE__) || defined(MACOSX)
#pragma clang diagnostic ignored "-Wdeprecated-declarations"
#include <GLUT/glut.h>
#ifndef glutCloseFunc
#define glutCloseFunc glutWMCloseFunc
#endif
#else
#include <GL/freeglut.h>
#endif

// includes, cuda
#include <vector_types.h>
#include <cuda_runtime.h>
#include <cuda_gl_interop.h>

// CUDA utilities and system includes
#include <helper_cuda.h>
#include <helper_functions.h>
#include <vector_types.h>

typedef unsigned int uint;
typedef unsigned char uchar;

#define MAX_EPSILON_ERROR 5.0f
#define THRESHOLD 0.15f

const char *sSDKsample = "simpleTexture3D";

const char *volumeFilename = "Bucky.raw";
const cudaExtent volumeSize = make_cudaExtent(32, 32, 32);

const uint width = 512, height = 512;
const dim3 blockSize(16, 16, 1);
const dim3 gridSize(width / blockSize.x, height / blockSize.y);

float w = 0.5;  // texture coordinate in z

GLuint pbo;  // OpenGL pixel buffer object
struct cudaGraphicsResource
    *cuda_pbo_resource;  // CUDA Graphics Resource (to transfer PBO)

bool linearFiltering = true;
bool animate = true;

StopWatchInterface *timer = NULL;

uint *d_output = NULL;

// Auto-Verification Code
const int frameCheckNumber = 4;
int fpsCount = 0;  // FPS count for averaging
int fpsLimit = 1;  // FPS limit for sampling
int g_Index = 0;
unsigned int frameCount = 0;
unsigned int g_TotalErrors = 0;
volatile int g_GraphicsMapFlag = 0;

int *pArgc = NULL;
char **pArgv = NULL;

#ifndef MAX
#define MAX(a, b) ((a > b) ? a : b)
#endif

extern "C" void cleanup();
extern "C" void setTextureFilterMode(bool bLinearFilter);
extern "C" void initCuda(const uchar *h_volume, cudaExtent volumeSize);
extern "C" void render_kernel(dim3 gridSize, dim3 blockSize, uint *d_output,
                              uint imageW, uint imageH, float w);
extern void cleanupCuda();

void loadVolumeData(char *exec_path);

void computeFPS() {
   
  frameCount++;
  fpsCount++;

  if (fpsCount == fpsLimit) {
   
    char fps[256];
    float ifps = 1.f / (sdkGetAverageTimerValue(&timer) / 1000.f);
    sprintf(fps, "%s: %3.1f fps", sSDKsample, ifps);

    glutSetWindowTitle(fps);
    fpsCount = 0;

    fpsLimit = ftoi(MAX(1.0f, ifps));
    sdkResetTimer(&timer);
  }
}

// render image using CUDA
void render() {
   
  // map PBO to get CUDA device pointer
  g_GraphicsMapFlag++;
  checkCudaErrors(cudaGraphicsMapResources(1, &cuda_pbo_resource, 0));
  size_t num_bytes;
  checkCudaErrors(cudaGraphicsResourceGetMappedPointer(
      (void **)&d_output, &num_bytes, cuda_pbo_resource));
  // printf("CUDA mapped PBO: May access %ld bytes\n", num_bytes);

  // call CUDA kernel, writing results to PBO
  render_kernel(gridSize, blockSize, d_output, width, height, w);

  getLastCudaError("render_kernel failed");

  if (g_GraphicsMapFlag) {
   
    checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0));
    g_GraphicsMapFlag--;
  }
}

// display results using OpenGL (called by GLUT)
void display() {
   
  sdkStartTimer(&timer);

  render();

  // display results
  glClear(GL_COLOR_BUFFER_BIT);

  // draw image from PBO
  glDisable(GL_DEPTH_TEST);
  glRasterPos2i(0, 0);
  glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
  glDrawPixels(width, height, GL_RGBA, GL_UNSIGNED_BYTE, 0);
  glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);

  glutSwapBuffers();
  glutReportErrors();

  sdkStopTimer(&timer);
  computeFPS();
}

void idle() {
   
  if (animate) {
   
    w += 0.01f;
    glutPostRedisplay();
  }
}

void keyboard(unsigned char key, int x, int y) {
   
  switch (key) {
   
    case 27:
#if defined(__APPLE__) || defined(MACOSX)
      exit(EXIT_SUCCESS);
      glutDestroyWindow(glutGetWindow());
      return;
#else
      glutDestroyWindow(glutGetWindow());
      return;
#endif

    case '=':
    case '+':
      w += 0.01f;
      break;

    case '-':
      w -= 0.01f;
      break;

    case 'f':
      linearFiltering = !linearFiltering;
      setTextureFilterMode(linearFiltering);
      break;

    case ' ':
      animate = !animate;
      break;

    default:
      break;
  }

  glutPostRedisplay();
}

void reshape(int x, int y) {
   
  glViewport(0, 0, x, y);

  glMatrixMode(GL_MODELVIEW);
  glLoadIdentity();

  glMatrixMode(GL_PROJECTION);
  glLoadIdentity();
  glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0);
}

void cleanup() {
   
  sdkDeleteTimer(&timer);

  // add extra check to unmap the resource before unregistering it
  if (g_GraphicsMapFlag) {
   
    checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0));
    g_GraphicsMapFlag--;
  }

  // unregister this buffer object from CUDA C
  checkCudaErrors(cudaGraphicsUnregisterResource(cuda_pbo_resource));
  glDeleteBuffers(1, &pbo);
  cleanupCuda();
}

void initGLBuffers() {
   
  // create pixel buffer object
  glGenBuffers(1, &pbo);
  glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo);
  glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB, width * height * sizeof(GLubyte) * 4,
               0, GL_STREAM_DRAW_ARB);
  glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0);

  // register this buffer object with CUDA
  checkCudaErrors(cudaGraphicsGLRegisterBuffer(
      &cuda_pbo_resource, pbo, cudaGraphicsMapFlagsWriteDiscard));
}

// Load raw data from disk
uchar *loadRawFile(const char *filename, size_t size) {
   
  FILE *fp = fopen(filename, "rb");

  if (!fp) {
   
    fprintf(stderr, "Error opening file '%s'\n", filename);
    return 0;
  }

  uchar *data = (uchar *)malloc(size);
  size_t read = fread(data, 1, size, fp);
  fclose(fp);

  printf("Read '%s', %zu bytes\n", filename, read);

  return data;
}

void initGL(int *argc, char **argv) {
   
  // initialize GLUT callback functions
  glutInit(argc, argv);
  glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
  glutInitWindowSize(width, height);
  glutCreateWindow("CUDA 3D texture");
  glutDisplayFunc(display);
  glutKeyboardFunc(keyboard);
  glutReshapeFunc(reshape);
  glutIdleFunc(idle);

  if (!isGLVersionSupported(2, 0) ||
      !areGLExtensionsSupported("GL_ARB_pixel_buffer_object")) {
   
    fprintf(stderr, "Required OpenGL extensions are missing.");
    exit(EXIT_FAILURE);
  }
}

void runAutoTest(const char *ref_file, char *exec_path) {
   
  checkCudaErrors(
      cudaMalloc((void **)&d_output, width * height * sizeof(GLubyte) * 4));

  // render the volumeData
  render_kernel(gridSize, blockSize, d_output, width, height, w);

  checkCudaErrors(cudaDeviceSynchronize());
  getLastCudaError("render_kernel failed");

  void *h_output = malloc(width * height * sizeof(GLubyte) * 4);
  checkCudaErrors(cudaMemcpy(h_output, d_output,
                             width * height * sizeof(GLubyte) * 4,
                             cudaMemcpyDeviceToHost));
  sdkDumpBin(h_output, width * height * sizeof(GLubyte) * 4,
             "simpleTexture3D.bin");

  bool bTestResult = sdkCompareBin2BinFloat(
      "simpleTexture3D.bin", sdkFindFilePath(ref_file, exec_path),
      width * height, MAX_EPSILON_ERROR, THRESHOLD, exec_path);

  checkCudaErrors(cudaFree(d_output));
  free(h_output);

  sdkStopTimer(&timer);
  sdkDeleteTimer(&timer);

  exit(bTestResult ? EXIT_SUCCESS : EXIT_FAILURE);
}

void loadVolumeData(char *exec_path) {
   
  // load volume data
  const char *path = sdkFindFilePath(volumeFilename, exec_path);

  if (path == NULL) {
   
    fprintf(stderr, "Error unable to find 3D Volume file: '%s'\n",
            volumeFilename);
    exit(EXIT_FAILURE);
  }

  size_t size = volumeSize.width * volumeSize.height * volumeSize.depth;
  uchar *h_volume = loadRawFile(path, size);

  initCuda(h_volume, volumeSize);
  sdkCreateTimer(&timer);

  free(h_volume);
}


// Program main

int main(int argc, char **argv) {
   
  pArgc = &argc;
  pArgv = argv;

  char *ref_file = NULL;

#if defined(__linux__)
  setenv("DISPLAY", ":0", 0);
#endif

  printf("%s Starting...\n\n", sSDKsample);

  if (checkCmdLineFlag(argc, (const char **)argv, "file")) {
   
    fpsLimit = frameCheckNumber;
    getCmdLineArgumentString(argc, (const char **)argv, "file", &ref_file);
  }

  // use command-line specified CUDA device, otherwise use device with highest
  // Gflops/s
  findCudaDevice(argc, (const char **)argv);

  if (ref_file) {
   
    loadVolumeData(argv[0]);
    runAutoTest(ref_file, argv[0]);
  } else {
   
    initGL(&argc, argv);

    // OpenGL buffers
    initGLBuffers();

    loadVolumeData(argv[0]);
  }

  printf(
      "Press space to toggle animation\n"
      "Press '+' and '-' to change displayed slice\n");

#if defined(__APPLE__) || defined(MACOSX)
  atexit(cleanup);
#else
  glutCloseFunc(cleanup);
#endif

  glutMainLoop();

  exit(EXIT_SUCCESS);
}
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of NVIDIA CORPORATION nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#ifndef _SIMPLETEXTURE3D_KERNEL_CU_
#define _SIMPLETEXTURE3D_KERNEL_CU_

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>

#include <helper_cuda.h>
#include <helper_math.h>

typedef unsigned int uint;
typedef unsigned char uchar;

cudaArray *d_volumeArray = 0;
cudaTextureObject_t tex;  // 3D texture

__global__ void d_render(uint *d_output, uint imageW, uint imageH, float w,
                         cudaTextureObject_t texObj) {
   
  uint x = __umul24(blockIdx.x, blockDim.x) + threadIdx.x;
  uint y = __umul24(blockIdx.y, blockDim.y) + threadIdx.y;

  float u = x / (float)imageW;
  float v = y / (float)imageH;
  // read from 3D texture
  float voxel = tex3D<float>(texObj, u, v, w);

  if ((x < imageW) && (y < imageH)) {
   
    // write output color
    uint i = __umul24(y, imageW) + x;
    d_output[i] = voxel * 255;
  }
}

extern "C" void setTextureFilterMode(bool bLinearFilter) {
   
  if (tex) {
   
    checkCudaErrors(cudaDestroyTextureObject(tex));
  }
  cudaResourceDesc texRes;
  memset(&texRes, 0, sizeof(cudaResourceDesc));

  texRes.resType = cudaResourceTypeArray;
  texRes.res.array.array = d_volumeArray;

  cudaTextureDesc texDescr;
  memset(&texDescr, 0, sizeof(cudaTextureDesc));

  texDescr.normalizedCoords = true;
  texDescr.filterMode =
      bLinearFilter ? cudaFilterModeLinear : cudaFilterModePoint;
  ;
  texDescr.addressMode[0] = cudaAddressModeWrap;
  texDescr.addressMode[1] = cudaAddressModeWrap;
  texDescr.addressMode[2] = cudaAddressModeWrap;
  texDescr.readMode = cudaReadModeNormalizedFloat;

  checkCudaErrors(cudaCreateTextureObject(&tex, &texRes, &texDescr, NULL));
}

extern "C" void initCuda(const uchar *h_volume, cudaExtent volumeSize) {
   
  // create 3D array
  cudaChannelFormatDesc channelDesc = cudaCreateChannelDesc<uchar>();
  checkCudaErrors(cudaMalloc3DArray(&d_volumeArray, &channelDesc, volumeSize));

  // copy data to 3D array
  cudaMemcpy3DParms copyParams = {
   0};
  copyParams.srcPtr =
      make_cudaPitchedPtr((void *)h_volume, volumeSize.width * sizeof(uchar),
                          volumeSize.width, volumeSize.height);
  copyParams.dstArray = d_volumeArray;
  copyParams.extent = volumeSize;
  copyParams.kind = cudaMemcpyHostToDevice;
  checkCudaErrors(cudaMemcpy3D(&copyParams));

  cudaResourceDesc texRes;
  memset(&texRes, 0, sizeof(cudaResourceDesc));

  texRes.resType = cudaResourceTypeArray;
  texRes.res.array.array = d_volumeArray;

  cudaTextureDesc texDescr;
  memset(&texDescr, 0, sizeof(cudaTextureDesc));

  // access with normalized texture coordinates
  texDescr.normalizedCoords = true;
  // linear interpolation
  texDescr.filterMode = cudaFilterModeLinear;
  // wrap texture coordinates
  texDescr.addressMode[0] = cudaAddressModeWrap;
  texDescr.addressMode[1] = cudaAddressModeWrap;
  texDescr.addressMode[2] = cudaAddressModeWrap;
  texDescr.readMode = cudaReadModeNormalizedFloat;

  checkCudaErrors(cudaCreateTextureObject(&tex, &texRes, &texDescr, NULL));
}

extern "C" void render_kernel(dim3 gridSize, dim3 blockSize, uint *d_output,
                              uint imageW, uint imageH, float w) {
   
  d_render<<<gridSize, blockSize>>>(d_output, imageW, imageH, w, tex);
}

void cleanupCuda() {
   
  if (tex) {
   
    checkCudaErrors(cudaDestroyTextureObject(tex));
  }
  if (d_volumeArray) {
   
    checkCudaErrors(cudaFreeArray(d_volumeArray));
  }
}

#endif  // #ifndef _SIMPLETEXTURE3D_KERNEL_CU_

4 参考链接

GitHub - NVIDIA/cuda-samples: Samples for CUDA Developers which demonstrates features in CUDA Toolkit

CUDA routines are functions that can be executed on the GPU using many threads in parallel1.
There are many CUDA code samples included as part of the CUDA Toolkit to help you get started on writing CUDA C/C++ applications2.
You can also find some easy introductions to CUDA C and C++ on the NVIDIA Technical Blog31.

GitHub - LitLeo/OpenCUDA

CUDA开发环境搭建 - 知乎 (zhihu.com)

(191条消息) VS+CUDA 新建项目里没有CUDA选项(附详细图文步骤)_cuda vs_Xav Zewen的博客-CSDN博客

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
机器学习/深度学习 PyTorch 算法框架/工具
Pytorch 最全入门介绍,Pytorch入门看这一篇就够了1
Pytorch 最全入门介绍,Pytorch入门看这一篇就够了
144 0
|
机器学习/深度学习 数据可视化 PyTorch
Pytorch 最全入门介绍,Pytorch入门看这一篇就够了2
Pytorch 最全入门介绍,Pytorch入门看这一篇就够了2
116 0
|
并行计算 计算机视觉 异构计算
【CUDA学习笔记】第三篇:CUDA C并行化编程【下半部分】(附案例代码下载方式)(二)
【CUDA学习笔记】第三篇:CUDA C并行化编程【下半部分】(附案例代码下载方式)(二)
190 0
【CUDA学习笔记】第三篇:CUDA C并行化编程【下半部分】(附案例代码下载方式)(二)
|
缓存 并行计算 算法
【CUDA学习笔记】第六篇:CUDA中的高级概念(上)
【CUDA学习笔记】第六篇:CUDA中的高级概念(上)
325 0
|
缓存 并行计算 API
【CUDA学习笔记】第三篇:CUDA C并行化编程【下半部分】(附案例代码下载方式)(一)
【CUDA学习笔记】第三篇:CUDA C并行化编程【下半部分】(附案例代码下载方式)(一)
169 0
|
并行计算 异构计算
|
并行计算 Linux 程序员
|
并行计算 异构计算 数据管理