关于前端性能优化问题,认识网页加载过程和防抖节流

简介: 该文章详细探讨了前端性能优化的方法,包括理解网页加载过程、实施防抖和节流技术来提升用户体验和性能。

平常我们在加载网页的时候,首先需要先加载网页代码,之后渲染出页面,在这个期间会执行若干个 JS 。那么,如果想要让网页呈现速度和渲染速度快,我们就得保证我们的代码在浏览器这个运行环境当中稳定且高效。这就谈到一个前端性能优化的问题。

在下面这篇文章,将讲解关于前端性能优化的一些常见问题。

一、网页加载过程

1、加载资源的形式

网页需要加载的资源,一般包括以下内容:

  • html 代码;
  • 媒体文件,如图片、视频等;
  • javascriptcss

2、加载资源的过程

加载资源的过程需要经过以下几个步骤:

  • DNS 解析:域名 -> IP 地址。
  • 浏览器根据 IP 地址向服务器发起 http 请求。
  • 服务器处理 http 请求,并返回给浏览器。

3、渲染页面的过程

渲染过程 - 1

  • 根据 HTML 代码生成 DOM Tree
  • 根据 CSS 代码生成 CSSOM
  • DOM TreeCSSOM 整合形成 Render Tree

渲染过程 - 2

  • 根据 Render Tree 渲染页面;
  • 遇到 <script> 则暂停渲染,优先加载并执行 JS 代码,完成后再继续执行;
  • 直至把 Render Tree 渲染完成。

4、关于window.onload 和 DOMContentLoaded

window.addEventListener('load', function(){
   
    //页面的全部资源加载完才会执行,包括图片、视频等
});

document.addEventListener('DOMContentLoaded', function(){
   
    //DOM 渲染完即可执行,此时图片、视频还可能没加载完 -> 尽量选择此方法
});

二、性能优化

性能优化是一个综合性的问题,永远没有标准答案,下面将从几个方面来讲解性能优化的内容。

1、性能优化原则

  • 多使用内存、缓存或其他方法。
  • 减少 CPU 计算量,减少网络加载耗时。
  • 适用于所有编程的优化方法 —— 空间换时间。

2、性能优化的方法

(1) 让加载更快

(2) 让渲染更快

3、让加载更快

(1)减少资源体积

  • 压缩代码: 可以通过压缩代码来减少资源体积,包括 js 文件、 css 文件和图片都可以进行压缩。同时服务器端 可以通过 gzip 算法来对资源进行压缩。

(2)减少访问次数

  • 合并代码: 比如说我们写了三四个文件,但通过打包可能就只剩下一个文件,并且文件里面是以一行的形式出现,或者雪碧图也算是其中一种方式。

  • SSR服务器端渲染:

    服务端把网页和数据一起加载,一起渲染。

    非SSR:先加载网页,再加载数据,再渲染数据,这个过程听起来就优点繁琐。

    早期的 JSPASPPHP,现在的 vue SSRReact SSR

  • 缓存:

    举个例子:假设有 10 个资源,如果每次请求都要请求 10 次,那这样子是非常耗时的;那如果 10 个资源中有 6 个命中了缓存,则只需要请求另外 4 个。

    那如何做缓存来达到减少访问次数呢?

    前端会在静态资源上加 hash 后缀,根据文件内容计算 hash 。当文件内容不变时,则 hashurl 都不变。此时 url 和文件不变,则会自动触发 http 缓存机制,返回 304

(3)使用更快的网络

  • 通过 CDN 来操作:

    CDN ,即内容分发网络(Content Delivery Network,简称 CDN ),是建立并覆盖在承载网之上,由分布在不同区域的边缘节点服务器群组成的分布式网络。

    CDN 就是一个反向代理,根据地域来做网络服务,主要是前端用来做静态资源加载,通常在前端项目部署的时候进行这项操作。

    我们平常所使用的 bootstrapJQuery 一般都采用 cdn 的形式。

    这里我也不是特别了解 cdn 的内容,只能才疏学浅的进行介绍。附上一篇我看完觉得比较好理解的文章,大家可以根据需求进行查看~

4、让渲染更快

(1)html、css、js和图片层面

  • css 放在 headJS 放在 body 最下面;

  • 尽早开始执行 JS ,用 DOMContentLoaded 触发;

  • 懒加载(图片懒加载,上滑加载更多)。

    <img id = "img1" src = "preview.png" data-realsrc = "abe.png"/>
    <script type = "text/javascript">
        let img1 = document.getElementById('img1');
        //把真实的图片data-realsrc赋值给预览的图片src
        img1.src = img1.getAttribute('data-realsrc');
        //…… 一系列逻辑操作
    </script>
    

(2)从DOM层面

  • DOM 查询进行缓存;
  • 从频繁进行 DOM 操作,变为合并到一起进行 DOM 结构插入;

注:关于DOM的性能优化我有在之前的一篇文章中讲过,在主题一的第4小点,这里不再进行细讲,大家可以根据自身需求进行查阅~

(3)防抖 debounce 和 节流 throttle

关于防抖和节流的讲解,详细见下方。

三、防抖和节流

1、防抖 debounce

(1)含义: 从频繁执行触发变为只在最后一次触发。

(2)发生场景: 监听一个输入框,如果直接用 keyup 事件,则每输入一个文字都会触发 onchange 事件,频繁执行操作。

(3)防抖解决: 用户输入结束或暂停时,才会触发 change 事件。

(4)引例阐述

假设我们现在要监听一个输入框的值,此时我们直接用 keyup 事件来实现。实现方式如下:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Document</title>
</head>
<body>
    <input type="text" id="input1">

    <script type="text/javascript">
         const input1 = document.getElementById('input1');
         input1.addEventListener('keyup', function(){
    
             console.log(input1.value);
         });
    </script>
</body>
</html>

此时浏览器的显示效果是这样的。

防抖场景

大家可以发现,当我们使用 keyup 事件处理,每当我们输入一个字母时,浏览器就会频繁进行打印,这样看起来也太耗费性能了。

于是就有了防抖的解决方案,防抖通过对频繁执行的操作变为只在最后一次执行。实现方式如下:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Document</title>
</head>
<body>
    <input type="text" id="input1">

    <script type="text/javascript">
         const input1 = document.getElementById('input1');
         let timer = null;
         input1.addEventListener('keyup', function(){
    
             if(timer){
    
                 clearTimeout(timer);
             }
             timer = setTimeout(() => {
    
                 //模拟触发 change 事件
                 console.log(input1.value);

                 //清空定时器
                 timer = null;
             }, 500);
            //  console.log(input1.value);
         });
    </script>
</body>
</html>

此时浏览器的显示效果是这样的。

防抖解决

通过上图发现,当我们在输入框输入字母时,只在最后输入结束时控制台才打印结果出来。而不会像上面那样频繁打印,因此通过防抖,实现了把频繁执行变为了只在最后一次执行的操作。

(5)封装防抖函数

通过上面的例子,相信大家对防抖有了一个基础的了解。接下来我们通过封装函数来实现相同效果的防抖功能。具体代码如下:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Document</title>
</head>
<body>
    <input type="text" id="input1">

    <script type="text/javascript">
        const input1 = document.getElementById('input1');

        // 封装一个防抖函数
        function debounce(fn, delay = 500){
    
            // timer 是在闭包中的
            let timer = null;

            return function(){
    
                if(timer){
    
                    clearTimeout(timer);
                }
                timer = setTimeout(() => {
    
                    fn.apply(this, arguments);
                }, delay);
            }
        }

        //运用防抖函数实现input输入框触发操作
        input1.addEventListener('keyup', debounce(function () {
    
            console.log(input1.value);
        }, 600));
    </script>
</body>
</html>

2、节流 throttle

(1)含义: 从频繁执行触发变为每隔一段时间触发一次。

(2)发生场景: 拖拽一个元素时,直接用 drag 事件,则会频繁触发,很容易导致卡顿。

(3)节流解决: 无论拖拽速度多快,都会每隔 100ms 触发一次(这里的 100ms 不是固定值,也可设置成其它的值)。

(4)引例阐述

假设我们现在要拖拽一个元素,并且想要随时拿到该元素被拖拽的值。此时我们直接用 drag 事件来实现。实现方式如下:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Document</title>
    <style>
        #div1{
    
            border: 1px solid #ccc;
            width: 200px;
            height: 100px;
        }
    </style>
</head>
<body>
    <div id = "div1" draggable="true">可拖拽</div>

    <script type="text/javascript">
        const div1 = document.getElementById('div1');
        //用节流之前
        div1.addEventListener('drag', function(e) {
    
            console.log(e.offsetX, e.offsetY);
        })
    </script>
</body>
</html>

此时浏览器的显示效果是这样的。

节流场景

大家可以发现,当我们使用 drag 事件处理,每当我们拖拽元素时,浏览器就会频繁进行打印,这样似乎有一点点耗费性能。

于是就有了节流的解决方案,节流通过对频繁执行的操作变为只在每隔一段时间操作。实现方式如下:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Document</title>
    <style>
        #div1{
    
            border: 1px solid #ccc;
            width: 200px;
            height: 100px;
        }
    </style>
</head>
<body>
    <div id = "div1" draggable="true">可拖拽</div>

    <script type="text/javascript">
        const div1 = document.getElementById('div1');

        // 用节流之后
        let timer = null;
        div1.addEventListener('drag', function(e){
    
            if(timer){
    
            return;
            }
            timer = setTimeout(() => {
    
                console.log(e.offsetX, e.offsetY);

                timer = null;
            }, 500);
        });

    </script>
</body>
</html>

此时浏览器的显示效果是这样的。

节流解决

通过上图发现,当我们在拖拽时,不再像刚刚那样频繁打印,而是有规律的每隔 500ms 打印一次,这样子看起来就比刚刚的频繁触发要好很多了。所以,节流是通过将频繁执行改为每隔一段时间执行。

(5)封装节流函数

通过上面的例子,相信大家对节流有了一个基础的了解。接下来我们通过封装函数来实现相同效果的节流功能。具体代码如下:

<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width, initial-scale=1.0">
    <title>Document</title>
</head>
<body>
    <input type="text" id="input1">

    <script type="text/javascript">
        const input1 = document.getElementById('input1');

        // 封装一个节流函数
        function throttle(fn, delay = 500){
    
            let timer = null;
            return function (){
    
                if(timer){
    
                    return;
                }
                timer = setTimeout(() => {
    
                    fn.apply(this, arguments);
                    timer = null;
                }, delay);
            }
        }

        //运用节流函数实现拖拽时每隔一段时间触发操作
        div1.addEventListener( 'drag', throttle(function(e){
    
            console.log(e.offsetX, e.offsetY);
        }, 200));
    </script>
</body>
</html>

四、写在最后

关于前端性能优化的一些基础内容就讲到这里啦!如有疑问或文章有讲的不好的地方欢迎评论区评论或私信我交流~

  • 关注公众号 星期一研究室 ,不定期分享学习干货

  • 如果这篇文章对你有用,记得点个赞加个关注再走哦~

相关文章
|
10天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
6天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2506 14
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
|
6天前
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
1519 14
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
|
8天前
|
编解码 JSON 自然语言处理
通义千问重磅开源Qwen2.5,性能超越Llama
击败Meta,阿里Qwen2.5再登全球开源大模型王座
530 13
|
1月前
|
运维 Cloud Native Devops
一线实战:运维人少,我们从 0 到 1 实践 DevOps 和云原生
上海经证科技有限公司为有效推进软件项目管理和开发工作,选择了阿里云云效作为 DevOps 解决方案。通过云效,实现了从 0 开始,到现在近百个微服务、数百条流水线与应用交付的全面覆盖,有效支撑了敏捷开发流程。
19282 30
|
1月前
|
人工智能 自然语言处理 搜索推荐
阿里云Elasticsearch AI搜索实践
本文介绍了阿里云 Elasticsearch 在AI 搜索方面的技术实践与探索。
18836 20
|
1月前
|
Rust Apache 对象存储
Apache Paimon V0.9最新进展
Apache Paimon V0.9 版本即将发布,此版本带来了多项新特性并解决了关键挑战。Paimon自2022年从Flink社区诞生以来迅速成长,已成为Apache顶级项目,并广泛应用于阿里集团内外的多家企业。
17524 13
Apache Paimon V0.9最新进展
|
8天前
|
人工智能 自动驾驶 机器人
吴泳铭:AI最大的想象力不在手机屏幕,而是改变物理世界
过去22个月,AI发展速度超过任何历史时期,但我们依然还处于AGI变革的早期。生成式AI最大的想象力,绝不是在手机屏幕上做一两个新的超级app,而是接管数字世界,改变物理世界。
458 48
吴泳铭:AI最大的想象力不在手机屏幕,而是改变物理世界
|
1天前
|
云安全 存储 运维
叮咚!您有一份六大必做安全操作清单,请查收
云安全态势管理(CSPM)开启免费试用
354 4
叮咚!您有一份六大必做安全操作清单,请查收
|
2天前
|
存储 关系型数据库 分布式数据库
GraphRAG:基于PolarDB+通义千问+LangChain的知识图谱+大模型最佳实践
本文介绍了如何使用PolarDB、通义千问和LangChain搭建GraphRAG系统,结合知识图谱和向量检索提升问答质量。通过实例展示了单独使用向量检索和图检索的局限性,并通过图+向量联合搜索增强了问答准确性。PolarDB支持AGE图引擎和pgvector插件,实现图数据和向量数据的统一存储与检索,提升了RAG系统的性能和效果。