《大模型安全研究报告(2024年)》正式发布

本文涉及的产品
Web应用防火墙 3.0,每月20元额度 3个月
云安全基线管理CSPM免费试用,1000次1年
云安全中心 免费版,不限时长
简介: 速来get~

2024年9月19日,在杭州举行的云栖大会—AI治理与安全论坛上,阿里云智能集团标准化业务副总裁朱红儒女士与中国信息通信研究院安全所副总工程师杨剑锋共同发布了《大模型安全研究报告(2024年)》。该报告提出了全面的大模型安全框架,为行业安全治理提供了指导和最佳实践。报告深入探讨了大模型的技术演进过程、面临的安全风险及安全保护措施,并提出了未来发展的建议。
640.png
全球大模型技术竞赛正推动人工智能向通用强智能发展,引发人机交互和应用研发模式变革。大模型在各行业的广泛应用为第四次工业革命提供动力,但同时也带来安全风险,如模型“幻觉”和指令注入攻击。国际组织和主要国家通过制定治理原则、法律法规和技术标准来应对这些挑战。同时,大模型在逻辑推理、任务编排等方面的卓越能力,为解决网络空间安全瓶颈问题带来了新的机遇。

为有效防范和消减大模型的安全风险,并促进其在安全领域的应用,阿里云联合中国信息通信研究院等30余家行业单位共同编制《大模型安全研究报告(2024年)》。报告凝聚业界专家共识,聚焦当前大模型突出安全风险和网络空间安全瓶颈问题,从大模型自身安全和大模型赋能安全两个维度,提出涵盖安全目标、安全属性、保护对象、安全措施四个方面的大模型自身安全框架,以及大模型赋能安全框架。期待这些框架能为社会各方提供有益参考,共同推动大模型技术产业的健康发展。640 (1).png
报告主要内容包括:

大模型安全风险地图

为尽可能全面应对大模型领域的基础共性安全挑战,本报告优先对语言、多模态等各类基础大模型系统的安全风险进行系统梳理。与此同时,参考ISO/IEC 5338-2023 《人工智能系统生命周期过程》国际标准,将基础大模型系统抽象为训练数据、算法模型、系统平台和业务应用4个重要组成部分,并通过描绘这四个组成部分面临的重要和一般安全风险,形成大模型安全风险地图,共涵盖21个安全风险。

大模型自身安全框架

为消减大模型面临的基础共性安全风险出发,提出了涵盖安全目标、安全属性、保护对象、安全措施四个层面的大模型自身安全框架,构建了保障大模型安全的整体解决方案。同时,提出训练数据、模型算法、系统平台、业务应用四方面中共计16项安全保护措施。

大模型赋能安全框架

结合行业实践情况,本报告重点阐述大模型在网络安全、数据安全、内容安全三个领域的潜在应用方向。网络安全领域,大模型可应用于安全威胁识别、保护、检测、响应、恢复等多个保护环节中的关键场景。数据安全领域,大模型可应用于数据分类分级、APP(SDK)违规处理个人信息检测等场景。内容安全领域,大模型可应用于文本内容安全检测、图像视频内容安全检测和音频内容安全检测等场景。

相关文章
|
5月前
|
机器学习/深度学习 自然语言处理 Ubuntu
FunAudioLLM 技术评测报告
【7月更文第31天】随着人工智能技术的迅速发展,语音识别和语音合成技术已经成为日常生活中不可或缺的一部分。FunAudioLLM 作为一款开源的语音大模型,致力于提供高质量的语音服务,支持多种应用场景。本次评测将重点评估 FunAudioLLM 在性能、功能及技术先进性方面的能力,并将其与国际知名的大规模语音模型进行比较。
161 2
|
5月前
|
机器学习/深度学习 自然语言处理 语音技术
FunAudioLLM 技术测评报告
FunAudioLLM 技术测评报告
|
5月前
|
自然语言处理 人机交互 API
FunAudioLLM技术测评报告
FunAudioLLM技术测评报告
87 1
|
7月前
|
机器学习/深度学习 人工智能 搜索推荐
Sora复现项目Mora发布
Lehigh大学LAIR实验室推出Mora项目,旨在复现并超越OpenAI的Sora视频生成模型。Mora采用多智能体框架,通过协同工作实现文本到视频的转换,打破了视频生成技术的闭源限制。利用GPT-4和先进视频模型,Mora在视频生成、编辑和内容创作上展现强大潜力,已在多个任务中超越开源模型。然而,面临视频数据集版权、生成质量与长度、复杂指令遵循等挑战。
93 2
Sora复现项目Mora发布
|
7月前
|
机器学习/深度学习 人工智能 缓存
Contextual发布生成式表征指导调整模型
【2月更文挑战第17天】Contextual发布生成式表征指导调整模型
139 1
Contextual发布生成式表征指导调整模型
|
安全
基于SEIR模型的传染病预测软件开发(完整代码+数据集+报告)
基于SEIR模型的传染病预测软件开发(完整代码+数据集+报告)
252 0
基于SEIR模型的传染病预测软件开发(完整代码+数据集+报告)
|
机器学习/深度学习 传感器 编解码
微软团队发布第一个基于AI的天气和气候基础模型 ClimaX
微软团队发布第一个基于AI的天气和气候基础模型 ClimaX
374 0
|
前端开发
实验:CSS+Div基础 - 预习报告
网页设计技术实验预习报告。
295 1
实验:CSS+Div基础 - 预习报告
|
数据采集 机器学习/深度学习 人工智能
Arize AI 对顶级 ML 团队调查得出的 3 个结论
与 DevOps 或数据工程相比,MLOps 作为一种实践仍然相对年轻,尽管增长巨大。虽然很容易将其与 DevOps 相提并论,因为它的一些最佳实践很容易延续到 MLOps,但业内大多数人都认为,在将 ML 投入生产时存在一系列独特的挑战和需求。不幸的是,很少有可靠的行业调查来记录团队在应对这些不同挑战方面的表现。
下一篇
DataWorks