turtle库的几个简单案例,代码可直接运行(python经典编程案例)

简介: 该文章提供了多个使用Python的turtle库绘制不同图形的简单示例代码,如画三角形、正方形、多边形等,展示了如何通过turtle进行基本的绘图操作。

turtle官网:https://docs.python.org/3/library/turtle.html。这个库被介绍为一个最常用的用来给孩子们介绍编程知识的方法库,其主要是用于程序设计入门,是标准库之一,利用turtle可以制作很多复杂的绘图。

下面是几个简单案例:

1. 画三角形

from turtle import forward, right


def triangle(sidelength):
    for i in range(3):
        forward(sidelength)
        right(120)


triangle(300)

2. 画正方形并向右旋转

from turtle import forward, right


def square():
    for i in range(4):
        forward(100)
        right(90)


for i in range(60):
    square()
    right(10)

3. 画多边形

from turtle import forward, right


def polygon(sides):
    for i in range(sides):
        forward(100)
        right(360/sides)


# 六边形传个6就行,几边形就传几
polygon(6)

4. 画螺旋图案

画正方形并向右旋转,边长依次递增。

from turtle import forward, right


def square(sidelength):
    for i in range(4):
        forward(sidelength)
        right(90)


def spiral():
    length = 5
    for i in range(60):
        square(length)
        right(5)
        length += 5


spiral()

5. 画五角星并旋转

from turtle import forward, right


def star(sidelength):
    for i in range(5):
        forward(sidelength)
        right(144)


def star_spiral():
    length = 5
    for i in range(60):
        star(length)
        right(5)
        length += 5


star_spiral()

6. 画5个五角星

from turtle import *

def drawStar(x, y):
    pu()
    goto(x, y)
    pd()
    # set heading: 0
    seth(0)
    for i in range(5):
        fd(40)
        rt(144)

for x in range(0, 250, 50):
    drawStar(x, 0)

done()
相关文章
|
10天前
|
XML JSON 数据库
Python的标准库
Python的标准库
123 77
|
11天前
|
XML JSON 数据库
Python的标准库
Python的标准库
39 11
|
11天前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
52 8
|
16天前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
17天前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
42 6
|
7月前
|
算法 编译器 开发者
如何提高Python代码的性能:优化技巧与实践
本文探讨了如何提高Python代码的性能,重点介绍了一些优化技巧与实践方法。通过使用适当的数据结构、算法和编程范式,以及利用Python内置的性能优化工具,可以有效地提升Python程序的执行效率,从而提升整体应用性能。本文将针对不同场景和需求,分享一些实用的优化技巧,并通过示例代码和性能测试结果加以说明。
|
1月前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
47 2
|
3月前
|
人工智能 数据挖掘 数据处理
揭秘Python编程之美:从基础到进阶的代码实践之旅
【9月更文挑战第14天】本文将带领读者深入探索Python编程语言的魅力所在。通过简明扼要的示例,我们将揭示Python如何简化复杂问题,提升编程效率。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编码世界的大门。让我们开始这段充满智慧和乐趣的Python编程之旅吧!
|
2月前
|
大数据 Python
Python 高级编程:深入探索高级代码实践
本文深入探讨了Python的四大高级特性:装饰器、生成器、上下文管理器及并发与并行编程。通过装饰器,我们能够在不改动原函数的基础上增添功能;生成器允许按需生成值,优化处理大数据;上下文管理器确保资源被妥善管理和释放;多线程等技术则助力高效完成并发任务。本文通过具体代码实例详细解析这些特性的应用方法,帮助读者提升Python编程水平。
119 5
|
4月前
|
机器学习/深度学习 Python
时间序列特征提取:从理论到Python代码实践
时间序列是一种特殊的存在。这意味着你对表格数据或图像进行的许多转换/操作/处理技术对于时间序列来说可能根本不起作用。
70 1
时间序列特征提取:从理论到Python代码实践
下一篇
DataWorks