方案概览
当您去电器商城购买冰箱,您首先向前台发起询问哪里可以买到冰箱,前台将您带到了冰箱商店的位置;在冰箱商店,导购员向您询问想要什么参数的冰箱,并根据这些参数将合适的冰箱推荐给您。
类似的,您可以通过百炼的Assistant API 构建一个 Multi-Agent 架构的大模型应用实现智能导购,其中:
•规划助理(Router Agent)是该应用的核心,它会参考对话历史与用户的输入,选择合适的助理进行回复。
•手机导购、冰箱导购与电视导购接收规划助理的指派信息,主动向顾客询问商品参数偏好;在参数收集完成后,系统可以通过百炼应用进行智能商品检索,也可以使用SQL查询商品数据库,然后输出推荐的商品。
•用户与各助理的对话历史可以为每个助理的决策提供参考依据。 效果展示图
快速体验
您可以通过我们提前准备好的函数计算应用模板,快速搭建并测试一个集成了智能导购的网站。详细步骤如下:
函数计算提供的免费试用额度可以完全覆盖本案例所需资源消耗。额度消耗完后按量计费,对于本教程所涉及的 web 服务,只在有访问的情况下会产生费用。
创建函数计算应用
您可以访问我们准备好的函数计算应用模板,快速搭建一个集成智能导购的网站。智能导购可以通过多轮交互,收集顾客心仪的商品信息,默认商品包含手机、电视与冰箱。参考下图选择直接部署并填写您的 API Key,您可以访问我的API-KEY来获取您的API Key。其它表单项保持默认,单击页面左下角的创建并部署默认环境,等待项目部署完成即可(预计耗时 1 分钟)。
百炼应用ID(可选): 如果您计划使用百炼应用进行商品智能检索,请在创建应用时提供百炼应用ID,获取方式请参考创建百炼商品检索应用并集成到智能导购中(可选)。 如果您计划使用商品数据库检索,此项可留空。 如果您决定后期集成百炼应用,可在创建函数计算应用后,通过环境变量配置方式添加您的百炼应用ID。访问网站
在函数计算应用部署完成后,您可以在跳转后的页面的环境信息中找到示例网站的访问域名,单击即可查看,确认示例网站已经部署成功。验证智能导购效果
智能导购会主动询问并收集需要的商品参数信息;收集完成后打印出参数信息。
在导购收集到顾客的商品参数偏好后,您可以通过查询商品数据库来返回商品。如果您想通过百炼应用来进行智能商品检索,请参考创建百炼商品检索应用并集成到智能导购中(可选)。
关键代码
上述示例程序中用于意图识别的模块是规划助理(Router Agent)。经过规划助理的意图分类后,用户的问题会被传递给对应的手机导购 Agent、电视导购 Agent 或冰箱导购 Agent。
规划助理(Router Agent)
ROUTER_AGENT_INSTRUCTION = """你是一个问题分类器
请根结合用户的提问和上下文判断用户是希望了解的商品具体类型。
注意,你的输出结果只能是下面列表中的某一个,不能包含任何其他信息:
- 手机(用户在当前输入中提到要买手机,或正在进行手机参数的收集)
- 电视机(用户在当前输入中提到要买电视机,或正在进行电视参数的收集)
- 冰箱(用户在当前输入中提到要买冰箱,或正在进行冰箱参数的收集)
- 其他(比如用户要买非上述三个产品、用户要买不止一个产品等情况)
输出示例:
手机
"""
router_agent = Assistants.create(
model="qwen-plus",
name='引导员,路由器',
description='你是一个商城的引导员,负责将用户问题路由到不同的导购员。',
instructions=ROUTER_AGENT_INSTRUCTION
)
手机导购助理
电视导购助理
冰箱导购助理
选择不同的 Agent 进行回复
agent_map = {
"意图分类": router_agent.id,
"手机": mobilephone_guide_agent.id,
"冰箱": fridge_guide_agent.id,
"电视机": tv_guide_agent.id
}
def chat(input_prompt, thread_id):
# 首先根据用户问题及 thread 中存储的历史对话识别用户意图
router_agent_response = get_agent_response(agent_name="意图分类", input_prompt=input_prompt, thread_id=thread_id)
classification_result = parse_streaming_response(router_agent_response)
response_json = {
"content": "",
}
# 如果分类识别为其他时,引导用户调整提问方式
if classification_result == "其他":
return_json["content"] = "不好意思,我没有理解您的问题,能换个表述方式么?"
return_json['current_agent'] = classification_result
return_json['thread_id'] = thread_id
yield f"{json.dumps(return_json)}\n\n"
# 如果分类是手机、电视机或冰箱时,让对应的 Agent 进行回复
else:
agent_response = get_agent_response(agent_name=classification_result, input_prompt=input_prompt, thread_id=thread_id)
for chunk in agent_response:
response_json["content"] = chunk
response_json['current_agent'] = classification_result
response_json['thread_id'] = thread_id
yield f"{json.dumps(response_json)}\n\n"
创建百炼商品检索应用并集成到智能导购中(可选)
在收集完客户的购买需求后,您可以借助这些需求描述进行商品检索和推荐。
在您的实际生产环境中,也可以替换为通过您的已有数据库检索。
操作步骤
总结
通过以上步骤,您搭建了一个集成了智能导购的网站,可以全天候向顾客提供商品推荐服务。本案例中的架构也适用于智能问诊、求职推荐等场景。
应用于生产环境
为了将智能导购适配到您的产品并应用于生产环境中,您可以:
- 修改知识库。将您的商品信息作为知识库,同时您也可以在商品参数中添加商品详情页或下单页的链接,方便顾客进行浏览与下单。您也可以通过已有的数据库或其它服务中进行商品检索。
- 修改源码中的prompt来适配到您的产品中。修改源码的步骤为:
a. 回到应用详情页,在环境详情的最底部找到函数资源,点击函数名称,进入函数详情页。
b. 进入函数详情页后,在代码视图中找到prompt.py、agents.py文件并进行修改。
prompt.py定义了agent的功能以及询问参数的顺序等信息;agents.py创建了agent,以及生成回复的函数。
c. 单击部署代码,等待部署完成即可。 - 参考10分钟给网站添加AI助手中的应用于生产环境部分,将智能导购集成到您的网站中。