Python中requests、aiohttp、httpx性能对比

简介: 这篇文章对比了Python中三个流行的HTTP客户端库:requests、aiohttp和httpx,在发送HTTP请求时的性能,并提供了测试代码和结果,以帮助选择适合不同应用场景的库。

在Python中,有许多用于发送HTTP请求的库,其中最受欢迎的是requests、aiohttp和httpx。这三个库的性能和功能各不相同,因此在选择使用哪个库时,需要考虑到自己的需求和应用场景。

首先,让我们来了解一下这三个库的基本介绍。

  • requests 是一个简单易用的HTTP库,它可以发送HTTP请求和处理HTTP响应。它的API简单易用,可以轻松地实现HTTP请求和响应的处理。

  • aiohttp 是一个异步HTTP客户端/服务器框架,它使用asyncio库实现异步IO操作。它支持HTTP/1.1和HTTP/2协议,可以轻松地处理大量并发请求。

  • httpx 是一个全新的HTTP客户端库,它提供了更加现代化的API和更好的性能。它支持异步和同步请求,支持HTTP/1.1和HTTP/2协议,还提供了WebSocket和HTTP/1.1协议升级的支持。

接下来,我们将对这三个库进行性能测试,以便更好地了解它们的性能和优缺点。

我们使用Python 3.9.1版本进行测试,测试的机器配置为Intel Core i7-7700HQ CPU @ 2.80GHz,16GB内存,Windows 10操作系统。

requests测试

首先,我们测试了发送1000个同步请求的时间。测试代码如下:

import requests
import time
start_time = time.time()
for i in range(1000):
    response = requests.get('https://www.baidu.com')
end_time = time.time()
print('Time taken: ', end_time - start_time)

测试结果如下:

Time taken:  8.606025457382202

aiohttp测试

接下来,我们测试使用aiohttp发送1000个异步请求的时间。测试代码如下:

import aiohttp
import asyncio
import time
async def fetch(session, url):
    async with session.get(url) as response:
        return await response.read()
async def main():
    async with aiohttp.ClientSession() as session:
        tasks = []
        for i in range(1000):
            task = asyncio.ensure_future(fetch(session, 'https://www.baidu.com'))
            tasks.append(task)
        responses = await asyncio.gather(*tasks)
start_time = time.time()
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
end_time = time.time()
print('Time taken: ', end_time - start_time)

测试结果如下:

Time taken:  1.8979811668395996

httpx测试

最后,我们测试使用httpx发送1000个异步请求的时间。测试代码如下:

import httpx
import asyncio
import time
async def main():
    async with httpx.AsyncClient() as client:
        for i in range(1000):
            response = await client.get('https://www.baidu.com')
start_time = time.time()
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
end_time = time.time()
print('Time taken: ', end_time - start_time)

测试结果如下:

Time taken:  1.4310226440429688

从上述测试结果可以看出,httpx的性能最好,aiohttp的性能次之,requests的性能最差。但是,在实际应用中,我们需要根据具体的需求来选择合适的库。如果我们需要处理大量并发请求,那么aiohttp和httpx是更好的选择,因为它们支持异步IO操作,可以更好地处理大量并发请求。如果我们只需要发送一些简单的HTTP请求,那么requests是一个更简单和易用的选择。

这三个库各有优缺点,我们需要根据自己的需求和应用场景来选择合适的库。

相关文章
|
2月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
2月前
|
数据采集 存储 C++
Python异步爬虫(aiohttp)加速微信公众号图片下载
Python异步爬虫(aiohttp)加速微信公众号图片下载
|
2月前
|
Web App开发 安全 数据安全/隐私保护
利用Python+Requests实现抖音无水印视频下载
利用Python+Requests实现抖音无水印视频下载
|
3月前
|
机器学习/深度学习 数据采集 算法
Python AutoML框架选型攻略:7个工具性能对比与应用指南
本文系统介绍了主流Python AutoML库的技术特点与适用场景,涵盖AutoGluon、PyCaret、TPOT、Auto-sklearn、H2O AutoML及AutoKeras等工具,帮助开发者根据项目需求高效选择自动化机器学习方案。
351 1
|
2月前
|
JSON 网络安全 数据格式
Python网络请求库requests使用详述
总结来说,`requests`库非常适用于需要快速、简易、可靠进行HTTP请求的应用场景,它的简洁性让开发者避免繁琐的网络代码而专注于交互逻辑本身。通过上述方式,你可以利用 `requests`处理大部分常见的HTTP请求需求。
301 51
|
1月前
|
数据采集 存储 Web App开发
Python爬虫库性能与选型实战指南:从需求到落地的全链路解析
本文深入解析Python爬虫库的性能与选型策略,涵盖需求分析、技术评估与实战案例,助你构建高效稳定的数据采集系统。
244 0
|
2月前
|
数据采集 API 调度
Python爬虫框架对比:Scrapy vs Requests在API调用中的应用
本文对比了 Python 中 Scrapy 与 Requests 两大爬虫框架在 API 调用中的差异,涵盖架构设计、调用模式、性能优化及适用场景,并提供实战建议,助力开发者根据项目需求选择合适工具。
|
3月前
|
JSON 数据格式 Python
解决Python requests库POST请求参数顺序问题的方法。
总之,想要在Python的requests库里保持POST参数顺序,你要像捋顺头发一样捋顺它们,在向服务器炫耀你那有条不紊的数据前。抓紧手中的 `OrderedDict`与 `json`这两把钥匙,就能向服务端展示你的请求参数就像经过高端配置的快递包裹,里面的商品摆放井井有条,任何时候开箱都是一种享受。
94 10
|
8天前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
180 102

推荐镜像

更多