【C++核心】特殊的元素集合-数组与字符串详解

简介: 这篇文章详细讲解了C++中数组和字符串的基本概念、操作和应用,包括一维数组、二维数组的定义和使用,以及C风格字符串和C++字符串类的对比。

一. 数组

1.1 概述

所谓数组,就是一个集合,里面存放了相同类型的数据元素

特点1: 数组中的每个数据元素都是相同的数据类型

特点2: 数组是由连续的内存位置组成的

1.2 一维数组

1.2.1 一维数组定义方式

一维数组定义的三种方式:

  1. 数据类型 数组名[ 数组长度 ];
  2. 数据类型 数组名[ 数组长度 ] = { 值1,值2 ...};
  3. 数据类型 数组名[ ] = { 值1,值2 ...};

示例

int main() {
   

    //定义方式1
    //数据类型 数组名[元素个数];
    int score[10];

    //利用下标赋值
    score[0] = 100;
    score[1] = 99;
    score[2] = 85;

    //利用下标输出
    cout << score[0] << endl;
    cout << score[1] << endl;
    cout << score[2] << endl;

    //第二种定义方式
    //数据类型 数组名[元素个数] =  {值1,值2 ,值3 ...};
    //如果{}内不足10个数据,剩余数据用0补全
    int score2[10] = {
    100, 90,80,70,60,50,40,30,20,10 };

    //逐个输出
    //cout << score2[0] << endl;
    //cout << score2[1] << endl;

    //一个一个输出太麻烦,因此可以利用循环进行输出
    for (int i = 0; i < 10; i++)
    {
   
        cout << score2[i] << endl;
    }

    //定义方式3
    //数据类型 数组名[] =  {值1,值2 ,值3 ...};
    int score3[] = {
    100,90,80,70,60,50,40,30,20,10 };

    for (int i = 0; i < 10; i++)
    {
   
        cout << score3[i] << endl;
    }

    system("pause");

    return 0;
}

总结1:数组名的命名规范与变量名命名规范一致,不要和变量重名
总结2:数组中下标是从0开始索引

1.2.2 一维数组数组名

一维数组名称的 用途

  1. 可以统计整个数组在内存中的长度
  2. 可以获取数组在内存中的首地址

示例:

int main() {
   

    //数组名用途
    //1、可以获取整个数组占用内存空间大小
    int arr[10] = {
    1,2,3,4,5,6,7,8,9,10 };

    cout << "整个数组所占内存空间为: " << sizeof(arr) << endl;
    cout << "每个元素所占内存空间为: " << sizeof(arr[0]) << endl;
    cout << "数组的元素个数为: " << sizeof(arr) / sizeof(arr[0]) << endl;

    //2、可以通过数组名获取到数组首地址
    cout << "数组首地址为: " << (int)arr << endl;
    cout << "数组中第一个元素地址为: " << (int)&arr[0] << endl;
    cout << "数组中第二个元素地址为: " << (int)&arr[1] << endl;

    //arr = 100; 错误,数组名是常量,因此不可以赋值


    system("pause");

    return 0;
}

注意:数组名是常量,不可以赋值
总结1:直接打印数组名,可以查看数组所占内存的首地址
总结2:对数组名进行sizeof,可以获取整个数组占内存空间的大小

1.2.3 冒泡排序

作用: 最常用的排序算法,对数组内元素进行排序

  1. 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
  2. 对每一对相邻元素做同样的工作,执行完毕后,找到第一个最大值。
  3. 重复以上的步骤,每次比较次数-1,直到不需要比较

示例: 将数组 { 4,2,8,0,5,7,1,3,9 } 进行升序排序

int main() {
   

    int arr[9] = {
    4,2,8,0,5,7,1,3,9 };

    for (int i = 0; i < 9 - 1; i++)
    {
   
        for (int j = 0; j < 9 - 1 - i; j++)
        {
   
            if (arr[j] > arr[j + 1])
            {
   
                int temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
        }
    }

    for (int i = 0; i < 9; i++)
    {
   
        cout << arr[i] << endl;
    }

    system("pause");

    return 0;
}

1.3 二维数组

二维数组就是在一维数组上,多加一个维度。

1.3.1 二维数组定义方式

二维数组定义的四种方式:

  1. 数据类型 数组名[ 行数 ][ 列数 ];
  2. 数据类型 数组名[ 行数 ][ 列数 ] = { {数据1,数据2 } ,{数据3,数据4 } };
  3. 数据类型 数组名[ 行数 ][ 列数 ] = { 数据1,数据2,数据3,数据4};
  4. 数据类型 数组名[ ][ 列数 ] = { 数据1,数据2,数据3,数据4};

建议:以上4种定义方式,利用第二种更加直观,提高代码的可读性

示例:

int main() {
   

    //方式1  
    //数组类型 数组名 [行数][列数]
    int arr[2][3];
    arr[0][0] = 1;
    arr[0][1] = 2;
    arr[0][2] = 3;
    arr[1][0] = 4;
    arr[1][1] = 5;
    arr[1][2] = 6;

    for (int i = 0; i < 2; i++)
    {
   
        for (int j = 0; j < 3; j++)
        {
   
            cout << arr[i][j] << " ";
        }
        cout << endl;
    }

    //方式2 
    //数据类型 数组名[行数][列数] = { {数据1,数据2 } ,{数据3,数据4 } };
    int arr2[2][3] =
    {
   
        {
   1,2,3},
        {
   4,5,6}
    };

    //方式3
    //数据类型 数组名[行数][列数] = { 数据1,数据2 ,数据3,数据4  };
    int arr3[2][3] = {
    1,2,3,4,5,6 }; 

    //方式4 
    //数据类型 数组名[][列数] = { 数据1,数据2 ,数据3,数据4  };
    int arr4[][3] = {
    1,2,3,4,5,6 };

    system("pause");

    return 0;
}

总结:在定义二维数组时,如果初始化了数据,可以省略行数

1.3.2 二维数组数组名
  • 查看二维数组所占内存空间
  • 获取二维数组首地址

示例:

int main() {
   

    //二维数组数组名
    int arr[2][3] =
    {
   
        {
   1,2,3},
        {
   4,5,6}
    };

    cout << "二维数组大小: " << sizeof(arr) << endl;
    cout << "二维数组一行大小: " << sizeof(arr[0]) << endl;
    cout << "二维数组元素大小: " << sizeof(arr[0][0]) << endl;

    cout << "二维数组行数: " << sizeof(arr) / sizeof(arr[0]) << endl;
    cout << "二维数组列数: " << sizeof(arr[0]) / sizeof(arr[0][0]) << endl;

    //地址
    cout << "二维数组首地址:" << arr << endl;
    cout << "二维数组第一行地址:" << arr[0] << endl;
    cout << "二维数组第二行地址:" << arr[1] << endl;

    cout << "二维数组第一个元素地址:" << &arr[0][0] << endl;
    cout << "二维数组第二个元素地址:" << &arr[0][1] << endl;

    system("pause");

    return 0;
}

总结1:二维数组名就是这个数组的首地址
总结2:对二维数组名进行sizeof时,可以获取整个二维数组占用的内存空间大小

1.3.3 二维数组应用案例

考试成绩统计:

案例描述:有三名同学(张三,李四,王五),在一次考试中的成绩分别如下表,请分别输出三名同学的总成绩

语文 数学 英语
张三 100 100 100
李四 90 50 100
王五 60 70 80

参考答案:

int main() {
   

    int scores[3][3] =
    {
   
        {
   100,100,100},
        {
   90,50,100},
        {
   60,70,80},
    };

    string names[3] = {
    "张三","李四","王五" };

    for (int i = 0; i < 3; i++)
    {
   
        int sum = 0;
        for (int j = 0; j < 3; j++)
        {
   
            sum += scores[i][j];
        }
        cout << names[i] << "同学总成绩为: " << sum << endl;
    }

    system("pause");

    return 0;
}

二. 字符串

C++ 提供了以下两种类型的字符串表示形式:

  • C 风格字符串
  • C++ 引入的 string 类类型

2.1 C 风格字符串

C 风格的字符串起源于 C 语言,并在 C++ 中继续得到支持。字符串实际上是使用 null 字符 \0 终止的一维字符数组。因此,一个以 null 结尾的字符串,包含了组成字符串的字符。

C/C++ 中的字符串表示
其实,您不需要把 null 字符放在字符串常量的末尾。C++ 编译器会在初始化数组时,自动把 \0 放在字符串的末尾。让我们尝试输出上面的字符串:

#include <iostream>

using namespace std;

int main ()
{
   
   char site[7] = {
   'A', 'B', 'C', 'D', 'E', 'F', '\0'};

   cout << "char类型: " << site << endl;

   return 0;
}

C++ 中有大量的函数用来操作以 null 结尾的字符串:

strcpy(s1, s2):复制字符串 s2 到字符串 s1。
strcat(s1, s2):连接字符串 s2 到字符串 s1 的末尾。连接字符串也可以用 + 号,例如:
strlen(s1):返回字符串 s1 的长度。
strcmp(s1, s2):如果 s1 和 s2 是相同的,则返回 0;如果 s1s2 则返回值大于 0。
strchr(s1, ch):返回一个指针,指向字符串 s1 中字符 ch 的第一次出现的位置。
strstr(s1, s2):返回一个指针,指向字符串 s1 中字符串 s2 的第一次出现的位置。
示例:

#include <iostream>
#include <cstring>

using namespace std;

int main ()
{
   
   char str1[13] = "baidu";
   char str2[13] = "google";
   char str3[13];
   int  len ;

   // 复制 str1 到 str3
   strcpy( str3, str1);
   cout << "strcpy( str3, str1) : " << str3 << endl;

   // 连接 str1 和 str2
   strcat( str1, str2);
   cout << "strcat( str1, str2): " << str1 << endl;

   // 连接后,str1 的总长度
   len = strlen(str1);
   cout << "strlen(str1) : " << len << endl;

   return 0;
}

执行结果如下:

strcpy( str3, str1) : baidu
strcat( str1, str2): baidugoogle
strlen(str1) : 11

2.2 C++ 中的 String 类

C++ 标准库提供了 string 类类型,支持上述所有的操作,另外还增加了其他更多的功能。

示例:

#include <iostream>
#include <string>

using namespace std;

int main ()
{
   
   string str1 = "baidu";
   string str2 = "google";
   string str3;
   int  len ;

   // 复制 str1 到 str3
   str3 = str1;
   cout << "str3 : " << str3 << endl;

   // 连接 str1 和 str2
   str3 = str1 + str2;
   cout << "str1 + str2 : " << str3 << endl;

   // 连接后,str3 的总长度
   len = str3.size();
   cout << "str3.size() :  " << len << endl;

   return 0;
}

执行结果如下:

str3 : baidu
str1 + str2 : baidugoogle
str3.size() :  11
相关文章
|
8天前
|
弹性计算 人工智能 架构师
阿里云携手Altair共拓云上工业仿真新机遇
2024年9月12日,「2024 Altair 技术大会杭州站」成功召开,阿里云弹性计算产品运营与生态负责人何川,与Altair中国技术总监赵阳在会上联合发布了最新的“云上CAE一体机”。
阿里云携手Altair共拓云上工业仿真新机遇
|
4天前
|
机器学习/深度学习 算法 大数据
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
2024“华为杯”数学建模竞赛,对ABCDEF每个题进行详细的分析,涵盖风电场功率优化、WLAN网络吞吐量、磁性元件损耗建模、地理环境问题、高速公路应急车道启用和X射线脉冲星建模等多领域问题,解析了问题类型、专业和技能的需要。
2463 14
【BetterBench博士】2024 “华为杯”第二十一届中国研究生数学建模竞赛 选题分析
|
4天前
|
机器学习/深度学习 算法 数据可视化
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
2024年中国研究生数学建模竞赛C题聚焦磁性元件磁芯损耗建模。题目背景介绍了电能变换技术的发展与应用,强调磁性元件在功率变换器中的重要性。磁芯损耗受多种因素影响,现有模型难以精确预测。题目要求通过数据分析建立高精度磁芯损耗模型。具体任务包括励磁波形分类、修正斯坦麦茨方程、分析影响因素、构建预测模型及优化设计条件。涉及数据预处理、特征提取、机器学习及优化算法等技术。适合电气、材料、计算机等多个专业学生参与。
1502 14
【BetterBench博士】2024年中国研究生数学建模竞赛 C题:数据驱动下磁性元件的磁芯损耗建模 问题分析、数学模型、python 代码
|
1月前
|
运维 Cloud Native Devops
一线实战:运维人少,我们从 0 到 1 实践 DevOps 和云原生
上海经证科技有限公司为有效推进软件项目管理和开发工作,选择了阿里云云效作为 DevOps 解决方案。通过云效,实现了从 0 开始,到现在近百个微服务、数百条流水线与应用交付的全面覆盖,有效支撑了敏捷开发流程。
19274 29
|
1月前
|
人工智能 自然语言处理 搜索推荐
阿里云Elasticsearch AI搜索实践
本文介绍了阿里云 Elasticsearch 在AI 搜索方面的技术实践与探索。
18822 20
|
1月前
|
Rust Apache 对象存储
Apache Paimon V0.9最新进展
Apache Paimon V0.9 版本即将发布,此版本带来了多项新特性并解决了关键挑战。Paimon自2022年从Flink社区诞生以来迅速成长,已成为Apache顶级项目,并广泛应用于阿里集团内外的多家企业。
17515 13
Apache Paimon V0.9最新进展
|
6天前
|
编解码 JSON 自然语言处理
通义千问重磅开源Qwen2.5,性能超越Llama
击败Meta,阿里Qwen2.5再登全球开源大模型王座
365 11
|
1月前
|
存储 人工智能 前端开发
AI 网关零代码解决 AI 幻觉问题
本文主要介绍了 AI Agent 的背景,概念,探讨了 AI Agent 网关插件的使用方法,效果以及实现原理。
18697 16
|
2天前
|
算法 Java
JAVA并发编程系列(8)CountDownLatch核心原理
面试中的编程题目“模拟拼团”,我们通过使用CountDownLatch来实现多线程条件下的拼团逻辑。此外,深入解析了CountDownLatch的核心原理及其内部实现机制,特别是`await()`方法的具体工作流程。通过详细分析源码与内部结构,帮助读者更好地理解并发编程的关键概念。
|
2天前
|
SQL 监控 druid
Druid连接池学习
Druid学习笔记,使用Druid进行密码加密。参考文档:https://github.com/alibaba/druid
195 82