【深度学习之美】山重水复疑无路,最快下降问梯度(入门系列之七)

简介: “天下武功,唯快不破”。欲速览无限风光,必攀险峰;欲速抵山底幽谷,则必滚陡坡。这滚山坡的道理,其实就是梯度递减策略,而梯度递减策略,则是BP算法成功背后的“男(ji)人(chu)”。想知道为啥,来一探究竟呗!

系列文章:

一入侯门“深”似海,深度学习深几许(深度学习入门系列之一)
人工“碳”索意犹尽,智能“硅”来未可知(深度学习入门系列之二)
神经网络不胜语,M-P模型似可寻(深度学习入门系列之三)
“机器学习”三重门,“中庸之道”趋若人(深度学习入门系列之四)
Hello World感知机,懂你我心才安息 (深度学习入门系列之五)
损失函数减肥用,神经网络调权重(深度学习入门系列之六)


一年多前,吴军博士写了一本畅销书《智能时代》[1]。书里提到,在人工智能领域,有一个流派叫“鸟飞派”,亦称之为“模仿派”。说的是,当人们要学习飞翔的时候,最先想到的是模仿鸟一样去飞翔。
很多年前,印度诗人泰戈尔出了本《飞鸟集》,里面有个名句:“天空没有留下翅膀的痕迹,但我已经飞过”。有人对此解读为,“人世间,很多事情虽然做过了,却不为人所知,但那又如何?重要的是,我已做过,并从中获得了许多。”

两千多年前,司马迁在《史记•滑稽列传》写到:“此鸟不飞则已,一飞冲天;不鸣则已,一鸣惊人。”说的是当年楚庄王在“势不眷我”时,选择了“蛰伏”。蛰伏,只是一个储势过程,迟早有一天,蓄势待发,“发”则达天。
这三者的情感交集,让我联想到出了本章的主人公杰弗里•辛顿(Geoffrey Hinton)教授,在学术界里,他就是这样的一个“励志”人物!
1986年,辛顿教授和他的小伙伴们重新设计了BP算法,以“人工神经网络”模仿大脑工作机理,“吻”醒了沉睡多年的“人工智能”公主,一时风光无限。
但“好花不常开,好景不常在”。当风光不再时,辛顿和他的研究方向,逐渐被世人所淡忘。
这被“淡忘”的冷板凳一坐,就是30年。

但在这30年里,辛顿又如“飞鸟”一般,即使“飞过无痕”,也从不放弃。从哪里跌倒,就从哪里爬起。实在不行,即使换个马甲,也要重过一生。
玉汝于成,功不唐捐。
终于,在2006年,辛顿等人提出了“深度信念网(Deep Belief Nets,DBN)”(这实际上就是多层神经网络的马甲)[2]。这个“深度信念网”后期被称为“深度学习”。终于,辛顿再次闪耀于人工智能世界,随后被封为“深度学习教父”。

但细心的读者可发现,即使辛顿等人提出了“深度信念网”,在随后的小10年里,这个概念亦是不温不火地发展着(如图1所示)。直到后期(2012年以后),随着大数据和大计算(GPU、云计算等)的兴起,深度学习才开始大行其道,一时间甚嚣尘上。


473387ba332c29a061579c612ecdcabd36b2d99a


图7-1 深度学习的谷歌趋势图

回顾起杰弗里•辛顿过往40多年的学术生涯,可谓是顾跌宕起伏,但最终修得正果。倘若细细说起,这“牛逼”,还得从1986年吹起。

7.1 1986年的那篇神作

1986年10月,杰弗里•辛顿还在卡内基梅隆大学任职。他和在加州大学圣迭戈分校的认知心理学家大卫·鲁梅尔哈特(David Rumelhart)等人,在著名学术期刊《自然》上联合发表题为:“通过反向传播算法的学习表征(Learning Representations by Back-propagating errors)”的论文[3]。该文首次系统简洁地阐述反向传播算法(BP)在神经网络模型上的应用,该算法把网络权值纠错的运算量,从原来的与神经元数目的平方成正比,下降到只和神经元数目本身成正比。

与此同时,当时的大背景是,在八十年代末,Intel x86系列的微处理器和内存技术的发展,让计算机的运行速度和数据访存速度也比二十年前高了几个数量级。这一下(运算量下降)一上(计算速度上升),加之多层神经网络可通过设置隐含层 (hidden layer),极大增强了数据特征的表征能力,从而轻易解决感知机无法实现的异或门 (XOR gate)难题,这些“天时地利人和”的大好环境,极大缓解了当年明斯基对神经网络的责难。
于是,人工神经网络的研究,渐渐得以复苏。


26fbe65f390940904aca829eb23e43377a97fca6


图7-2 1986年杰弗里•辛顿的那篇神作

值得一提的是,在文献[3]中,杰弗里•辛顿并不是第一作者,鲁梅尔哈特才是,而辛顿仅仅“屈居”第二(如图7-2所示)。但为什么我们提起BP算法时,总是说起辛顿呢?其实原因也很简单,主要有二:第一、鲁梅尔哈特毕竟并非计算机科学领域之内的人士,我们计算机科学家,总不能找一个脑科学家去“拜码头”吧;第二、辛顿是这篇论文的通信作者,通常而言,通信作者才是论文思路的核心提供者,这样一来,即使作者排名第二,也没有埋没掉辛顿教授的贡献。

同在1986年,鲁梅尔哈特也和自己的小伙伴们合作发表了一篇题为“并行分布式处理:来自认知微结构的探索”的论文[4]。仅仅从论文题目的前半部分来看,我们很可能误解这是一个有关“高性能计算”的文章,但从标题的后半部分可以得知,这是鲁梅尔哈特等人对人类大脑研究的最新认知。鲁梅尔哈特对大脑工作机理的深入观察,极大地启发了辛顿。辛顿灵光一现,觉得可以把这个想法迁移到“人工神经网络”当中。于是,就有了他们神来一笔的合作。
我们知道,1986年,辛顿和鲁梅尔哈特能在大名鼎鼎的《自然》期刊上发表论文,自然不是泛泛而谈,它一定是解决了什么大问题。下面我们就聊聊这个话题。

7.2 多层感知机网络遇到的大问题

由于历史的惯性,在第六讲中提到的多层前馈网络,有时也被称为多层感知机(Multilayer Perceptron,MLP)。但这个提法导致概念多少有些混淆。这是因为,在多层前馈网络中,神经元的内部构造已悄然发生变化,即激活函数从简单粗暴的“阶跃函数”变成了比较平滑的挤压函数Sigmoid(如图7-3所示)。
激活函数为什么要换成Sigmoid呢?其实原因并不复杂,这是因为感知机的激活函数是阶跃函数,不利于函数求导,进而求损失函数的极小值。我们知道,当分类对象是线性可分,且学习率(learning rate)η足够小时,由感知机还不堪胜任,由其构建的网络,还可以训练达到收敛。但分类对象不是线性可分时,感知机就有点“黔驴技穷”了。因此,通常感知机并不能推广到一般前馈网络中。


695665b6fab2907e89e0f5ea550082b212818350


图 7-3 变更激活函数的前馈多层神经网络

按照我们前面章节的说法,所谓的机器学习,简单来说,就是找到一个好用的函数(function),从而较好地实现某个特定的功能(function)。一言蔽之,函数就是功能。而对于某个特定的前馈神经网络,给定网络参数(连接权值与阈值),其实就是定义了一个具备数据采集(输入层)、加工处理(隐含层),然后输出结果(输出层)的函数。
如果仅仅给定一个网络结构,其实它定义的是一个函数集合。因为不同的网络参数(连接权值与阈值),实现的功能“大相径庭”。功能不同,自然函数也是不同的!

针对前馈神经网络,我们需要实现的目的很简单,就是想让损失函数达到最小值,因为只有这样,实际输出和预期输出的差值才最小。那么,如何从众多网络参数(神经元之间的链接权值和阈值)中选择最佳的参数呢?
最简单粗暴的方法,当然就是枚举所有可能值了!


1d55debae62787470e13eaa4765e83e32924e177


图7-4 暴力调参不可取

但这中暴力策略,对稍微复杂一点的网络就不可取了!例如,用于语音识别的神经网络,假设网络结构有7层,每一层有1000个神经元,那么仅一层之间的全连接权值,就达到\(1000×1000=10^6\)个,一旦层次多了,那权值数量就海了去了!(如图7-4所示)。故此,这种暴力调参找最优参数,既不优雅,也不高效,故实不可取!

7.3到底什么是梯度?

为了克服多层感知机存在的问题,人们设计了一种名为delta(\(Delta \))法则(delta rule)的启发式方法,该方法可以让目标收敛到最佳解的近似值[5]。
delta法则的核心思想在于,使用梯度下降(gradient descent)的方法找极值。具体说来,就是在假设空间中搜索可能的权值向量,并以“最佳”的姿态,来拟合训练集合中的样本。那么,何谓最佳拟合呢?当然就是让前文提到的损失函数达到最小值!

我们知道,求某个函数的极值,难免就要用到“导数”等概念。既然我们把这个系列文章定位为入门层次,那不妨就再讲细致一点。什么是导数呢?所谓导数,就是用来分析函数“变化率”的一种度量。针对函数中的某个特定点x0,该点的导数就是x0点的“瞬间斜率”,也即切线斜率,见公式(7.1)。

$$ f'({x_0}) = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{\Delta y}}{{\Delta x}} \\\\ = \mathop {\lim }\limits_{\Delta x \to 0} \frac{{f({x_0} + \Delta x) - f({x_0})}}{{\Delta x}}\tag{7.1} $$

如果这个斜率越大,就表明其上升趋势越强劲。当这个斜率为0时,就达到了这个函数的“强弩之末”,即达到了极值点。而前文提到的损失函数,如果要达到损失最小,就难免用到导数“反向指导”如何快速抵达极小值。
在单变量的实值函数中,梯度就可以简单地理解为只是导数,或者说对于一个线性函数而言,梯度就是线的斜率。但对于多维变量的函数,它的梯度概念就不那么容易理解了。下面我们来谈谈这个概念。
在向量微积分中,标量场的梯度其实是一个向量场(vector filled)。对于特定函数的某个特定点,它的梯度就表示从该点出发,该函数值增长最为迅猛的方向(direction of greatest increase of a function)[6]。假设一个标量函数f的梯度记为:\(f\)或\(grad f\),这里的表示向量微分算子。那么,在一个三维直角坐标系,该函数的梯度就可以表示为公式(7.2):

$$ \nabla f = \left( {\frac{{\partial f}}{{\partial x}},\frac{{\partial f}}{{\partial y}},\frac{{\partial f}}{{\partial z}}} \right)\tag{7.2} $$

求这个梯度值,难免要用到“偏导”的概念。说到“偏导”,这里顺便“轻拍”一下国内的翻译。“偏导”的英文本意是“partial derivatives(局部导数)”,书本上常翻译为“偏导”,可能会把读者的思路引导“偏”了。
那什么是“局部导数”呢?对于多维变量函数而言,当求某个变量的导数(相比于全部变量,这里只求一个变量,即为“局部”),就是把其它变量视为常量,然后整个函数求其导数。之后,这个过程对每个变量都“临幸”一遍,放在向量场中,就得到了这个函数的梯度了。举例来说,对于3变量函数\(f = {x^2} + 3xy + {y^2} + {z^3}\),它的梯度可以这样求得:
(1) 把\(y\),\(z\)视为常量,得\(x\)的“局部导数”:

$$ \frac{{\partial f}}{{\partial x}} = 2x + 3y $$

(2) 然后把\(x\),\(z\)视为常量,得\(y\)的“局部导数”:

$$ \frac{{\partial f}}{{\partial y}} = 3x + 2y $$

(3) 最后把\(x\),\(y\)视为常量,得\(z\)的“局部导数”:

$$ \frac{{\partial f}}{{\partial y}} = 3{z^2} $$

于是,函数\(f\)的梯度可表示为:

$$ \nabla f = grad(f) \\\\ = \left( {2x + 3y,3x + 2y,3{z^2}} \right) $$

针对某个特定点,如点A(1, 2, 3),带入对应的值即可得到该点的梯度:

$$ \begin{aligned} \nabla f & = grad(f)\\\\&=(2x+3y,3x+2y,3z^2)\mid_{\begin{aligned}& x=1 \\\\ & y=2 \\\\ & z=3 \end{aligned}} \\\\ & = (8,7,27) \end{aligned} $$

这时,梯度可理解为,站在向量点A(1, 2, 3),如果想让函数f的值增长得最快,那么它的下一个前进的方向,就是朝着向量点B(8,7,27)方向进发(如图7-3所示)。很显然,梯度最明显的应用,就是快速找到多维变量函数的极(大/小)值。


fa7173766658813327198183bf5e53a187b84847


图7-5 梯度概念的示意图

在这里需要说明的是,我们用“局部导数”的翻译,仅仅是用来加深大家对“偏导”的理解,并不是想纠正大家已经约定俗成的叫法。所以为了简单起见,在后文我们还是将“局部导数”称呼为“偏导”。

7.4 到底什么是梯度下降?

上面我们提到了梯度的概念,下面我们说说在求损失函数极小值过程中,常常提到的“梯度递减”的概念。
我们先给出一个形象的案例。爬过山的人,可能会有这样的体会,爬坡愈平缓(相当于斜率较小),抵达山峰(函数峰值)的过程就越缓慢,而如果不考虑爬山的重力阻力(对于计算机而言不存在这样的阻力),山坡越陡峭(相当于斜率越大),顺着这样的山坡爬山,就越能快速抵达山峰(对于函数而言,就是愈加快速收敛到极值点)。


65e84b866c08b4c43ccdc900bb9f7a458acd3d2e


图7-6 梯度递减求极小值

如果我们把山峰“乾坤大挪移”,把爬山峰变成找谷底(即求极小值),这时找斜率最陡峭的坡而攀爬山峰的方法,并没有本质变化,不过是方向相反而已。如果把登山过程中求某点的斜率称为“梯度(gradient)”,而找谷底的方法,就可以把它称之为“梯度递减(gradient descent)”,示意图如图7-6所示。
依据“梯度递减”作为指导,走一步,算一步,一直遵循“最陡峭”的方向,探索着前进,这个过程,是不是有点像邓公的名句“摸着石头过河”?

这个“梯度递减”体现出来的指导意义,就是“机器学习”中的“学习”内涵,即使在大名鼎鼎的“AlphaGo”中,“学习”这是这么玩的!你是不是有点失望?这机器学习也太不高大上了!

但别忘了,在第一讲中,我们就已经讲到“学习”的本质,在于性能的提升。利用“梯度递减”的方法,的确在很大程度上,提升了机器的性能,所以,它就是“学习”!
当然,从图7-3中,我们也很容易看到“梯度递减”的问题所在,那就是它很容易收敛到局部最小值。正如攀登高峰,我们会感叹“一山还比一山高”,探寻谷底时,我们也可能发现,“一谷还比一谷低”。但是“只缘身在此山中”,当前的眼界让我们像“蚂蚁寻路”一样,很难让我们有全局观,因为我们都没有“上帝视角”。

7.5 重温神经网络的损失函数

针对前馈神经网络的设计,输入和输出层设计比较直观。比如说,假如我们尝试判断一张手写数字图片上面是否写着数字“2”。很自然地,我们可以把图片像素的灰度值作为网络的输入。如果图片的维度是16×16,那么我们输入层神经元就可以设计为256个(也就是说,输入层是一个包括256个灰度值向量),每个神经元接受的输入值,就是规格化的灰度值。

而输出层的设计也很简单,就是需要包含10神经元,输出是数字“0~9”的分类概率(也就是说,输出层是一个包括10个概率值的向量)。择其大者而判之,如图7-7所示,如果判定为“2”的概率(比如说80%)远远大于其他数字,那么整个神经网络的最终判定,就是手写图片中的数字是“2”,而非其它数字。
相比于神经网络输入、输出层设计的简单直观,它的隐含层设计,可就没有那么简单了。说好听点,它是一门艺术,依赖于“工匠”的打磨。说不好听点,它就是一个体力活,需要不断地“试错”。

但通过不断地“折腾”,研究人员还真是掌握了一些针对隐层的启发式设计规则(如下文即将提到的BP算法),以此降低训练网络所花的开销,并尽量提升网络的性能。
那么,怎样才算是提升神经网络性能呢?这就需要用到前面我们前面提到的损失函数了。在第六章我们提到,所谓“损失函数”,就是一个刻画实际输出值和期望输出值之间“落差”的函数。
为了达到理想状态,我们当然希望这种“落差”最小,也就是说,我们希望快速配置好网络参数,从而让这个损失函数达到极小值。这时,神经网络的性能也就接近最优!

关于求损失函数极小值,台湾大学李弘毅博士给出了一个通俗易懂的例子,下面我们来说说。对于识别手写数字的神经网络,训练数据都是一些“0,1 2, …, 9”等数字图像,如图7-8所示。


c2cc9974f1c0869eca1298d03e2386257e2e737f


图7-8 识别手写数字的神经网络

由于人们手写数字的风格不同,图像的残缺程度不同,输出的结果有时并不能“十全十美”,于是我们就用损失函数来衡量二者的误差。前面我们提到,常用的损失函数是:

$$ (Y,f(X)) = \frac{1}{2}{(Y - f(X))^2}\tag{7.3} $$

机器学习的任务,在很大程度上,找一个模型,拟合(fitting)或者说“适配”给定的训练数据,然后再用这个模型预测新数据。这个模型的表现形式,具体说来,就是设计一个好用的函数,用以揭示这些训练样本随自变量的变化关系。揭示拟合好坏的程度,就要用到损失函数。“损失”越小,说明拟合的效果就越好。


7f600f55091d803f5cca41d9b59c9cd814a86bc6


图7-9 用梯度递减,更新网络权值

在我们训练神经网络时,损失函数说白了,就是有关“权值参数”的函数。为了求损失函数的极小值,就不可避免地需要计算损失函数中每一个权值参数的偏导数,这时前文中提到的“梯度递减”方法就派上用场了。训练线性单元的梯度递减算法示意图如图7-9所示,图中的参数η就是“学习率”,它决定了梯度递减搜索的步长,这个步长“过犹不及”。如果值太小,则收敛慢,如果值太大,则容易越过极值,导致网络震荡,难以收敛。
图7-9仅仅给出一个权值变量\(w_i\)的梯度示意图,而实际上,神经网络中的参数是非常多的,因此针对损失函数\(L\)的权值向量的梯度\(mathop wlimits^ to\)可以记作:

$$ \nabla L(\mathop w\limits^ \to ) \equiv \left[ {\frac{{\partial L}}{{\partial {w_0}}},\frac{{\partial L}}{{\partial {w_2}}},...,\frac{{\partial L}}{{\partial {w_n}}}} \right]\tag{7.4} $$

在这里,\(nabla L(mathop wlimits^ to )\)本身就是一个向量,它的多个维度分别由损失函数\(L\)对多个权值参数\(w_i\)求偏导所得。当梯度被解释为权值空间的一个向量时,它就确定了L对陡峭上升的方向。
如果需要根据图7-9所示的公式来更新权值,我们需要一个更加实用的办法,在每一步重复计算。幸运的是,这个过程并不复杂,通过简易的数学推导,我们可以得到每个权值分量\(w_i\)更加简明的计算公式:

$$ \begin{aligned} \frac{\partial L}{\partial w_{i}}= & \frac{\partial}{\partial w_{i}}\frac{1}{2}(Y-f(X))^2=\frac{1}{2}\sum_{d\in D}\frac{\partial}{\partial w_{i}}(y_{d}-y_{d}')^2 \\\\ = & \frac{1}{2}\sum_{d\in D}2(y_{d}-y_{d}')\frac{\partial}{\partial w_{i}}(y_{d}-y_{d}') \\\\ = & \sum_{d\in D}(y_{d}-y_{d}')\frac{\partial}{\partial w_{i}}(y_{d}-\vec{w}\cdot\vec{x}_{d}) \\\\ = & \sum_{d\in D}(y_{d}-y_{d}')(y_{d}-\vec{x}_{id}) \end{aligned} \tag{7.5} $$

其中,\(x_{id}\)表示训练集合第\(d\)个样例的输入分量\(x_i\),\(y_d\)表示第\(d\)样例的期望输出值,\(y_{d}^{’}\)表示第\(d\)样例的实际输出值,这二者的差值就是“损失(loss)”,也称之为误差(error)。有了公式(7.5)做支撑,图7-9所示的算法就可行之有“章法”了。
有了前面的知识铺垫,我们终于可以在下一章谈谈误差反向传播(Back Propagation,BP)算法了。

7.6 小结

在本章中,我们主要讲解了梯度的概念。所谓梯度,就是该函数值增长最为迅猛的方向,然后我们介绍了梯度下降法则。
在下一章中,我们将用最为通俗易懂的图文并茂的方式,给你详细解释误差反向传播(BP)算法。BP算法不仅仅是作为经典留在我们的记忆里,而且,它还“历久弥新”活在当下。要知道,深度信念网(也就是深度学习)之所以性能奇佳,不仅仅是因为它有一个“无监督”的逐层预训练(unsupervised layer-wise training),除此之外,预训练之后的“微调(fine-tuning)”,还是需要“有监督”的BP算法作为支撑。
由此可见,BP算法影响之深,以至于“深度学习”都离不开它!
“世上没有白走的路,每一步都算数”。希望你能持续关注。

7.7 请你思考

通过本章的学习,请你思考如下问题:
(1)在前馈神经网络中,隐含层设计多少层、每一层有多少神经元比较合适呢?我们可以设定一种自动确定网络结构的方法吗?
(2)神经网络具有强大的特征表征能力,但“成也萧何,败也萧何”,BP算法常常遭遇“过拟合(overfitting)”,它可能会把噪音当做有效信号,你知道有什么策略来避免过拟合吗?

【参考文献】

[1] 吴军. 智能时代. 中信出版集团. 2016.8
[2] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7): 1527-1554.
[3] Williams D, Hinton G. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-538.
[4] Rumelhart D E, McClelland J L, PDP Research Group. Parallel Distributed Processing, Volume 1 Explorations in the Microstructure of Cognition: Foundations[J]. 1986.
[5] Tom Mitchell著.曾华军等译. 机器学习. 机器工业出版社. 2007.4
[6] Better Explained. Vector Calculus: Understanding the Gradient

文章作者:张玉宏,著有《品味大数据》一书。
联系邮件:zhangyuhong001@gmail.com
审校:我是主题曲哥哥。

【参考文献】

[1] (美) 雷·库兹韦尔, 李庆诚等译. 奇点临近.机械工业出版社.2012.12
2尤瓦尔·赫拉利,未来简史. 出版社:中信出版社.2017.1
[3] 李航.统计学习方法.清华大学出版社.2012.3
[4] Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators[J]. Neural networks, 1989, 2(5): 359-366.

文章作者:张玉宏(著有《品味大数据》
本文自选自《深度学习之美》一书(2018年7月电子工业出版社)

推荐阅读

一入侯门“深”似海,深度学习深几许(深度学习入门系列之一)
人工“碳”索意犹尽,智能“硅”来未可知(深度学习入门系列之二)
神经网络不胜语, M-P模型似可寻(深度学习入门系列之三)
“机器学习”三重门,“中庸之道”趋若人(深度学习入门系列之四)
Hello World感知机,懂你我心才安息(深度学习入门系列之五)
损失函数减肥用,神经网络调权重(深度学习入门系列之六)
山重水复疑无路,最快下降问梯度(深度学习入门系列之七)
BP算法双向传,链式求导最缠绵(深度学习入门系列之八)
全面连接困何处,卷积网络见解深(深度学习入门系列之九)
卷地风来忽吹散,积得飘零美如画(深度学习入门系列之十)
局部连接来减参,权值共享肩并肩(深度学习入门系列之十一)


##(未完待续)
相关文章
|
19天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:理解神经网络与反向传播算法
【9月更文挑战第20天】本文将深入浅出地介绍深度学习中的基石—神经网络,以及背后的魔法—反向传播算法。我们将通过直观的例子和简单的数学公式,带你领略这一技术的魅力。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你打开深度学习的大门,让你对神经网络的工作原理有一个清晰的认识。
|
10天前
|
机器学习/深度学习 人工智能 自然语言处理
软件工程师,入门下深度学习吧
软件工程师,入门下深度学习吧
35 9
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)入门与实践
【8月更文挑战第62天】本文以浅显易懂的方式介绍了深度学习领域中的核心技术之一——卷积神经网络(CNN)。文章通过生动的比喻和直观的图示,逐步揭示了CNN的工作原理和应用场景。同时,结合具体的代码示例,引导读者从零开始构建一个简单的CNN模型,实现对图像数据的分类任务。无论你是深度学习的初学者还是希望巩固理解的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
17天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习入门:从理论到实践
【9月更文挑战第22天】本文将带你走进深度学习的世界,从基础的理论概念出发,逐步深入到实践应用。我们将探讨神经网络的工作原理,以及如何通过编程实现一个简单的深度学习模型。无论你是初学者还是有一定基础的学习者,都能在这篇文章中找到有价值的信息。让我们一起揭开深度学习的神秘面纱,探索这个充满无限可能的领域吧!
|
20天前
|
机器学习/深度学习 人工智能 算法
深度学习中的卷积神经网络(CNN)入门与实践
【9月更文挑战第19天】在这篇文章中,我们将探索深度学习的一个重要分支——卷积神经网络(CNN)。从基础概念出发,逐步深入到CNN的工作原理和实际应用。文章旨在为初学者提供一个清晰的学习路径,并分享一些实用的编程技巧,帮助读者快速上手实践CNN项目。
|
25天前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习入门:理解卷积神经网络(CNN)
【9月更文挑战第14天】本文旨在为初学者提供一个关于卷积神经网络(CNN)的直观理解,通过简单的语言和比喻来揭示这一深度学习模型如何识别图像。我们将一起探索CNN的基本组成,包括卷积层、激活函数、池化层和全连接层,并了解它们如何协同工作以实现图像分类任务。文章末尾将给出一个简单的代码示例,帮助读者更好地理解CNN的工作原理。
42 7
|
24天前
|
机器学习/深度学习 人工智能 自然语言处理
揭秘人工智能的魔法:深度学习入门
【9月更文挑战第15天】在这篇文章中,我们将探索深度学习的奥秘,从基本原理到实际应用,一步步揭示这一技术如何改变我们的世界。你将了解神经网络的核心概念,学习如何训练模型,并看到深度学习在不同领域的应用案例。无论你是初学者还是有一定基础的学习者,这篇文章都将为你打开一扇通往AI未来的大门。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的卷积神经网络(CNN)入门
【8月更文挑战第31天】在人工智能的浪潮中,深度学习以其强大的数据处理能力成为时代的宠儿。本文将引导你走进深度学习的核心组件之一——卷积神经网络(CNN),并带你一探其背后的奥秘。通过简明的语言和直观的代码示例,我们将一起构建一个简易的CNN模型,理解它在图像处理领域的应用,并探索如何利用Python和TensorFlow实现它。无论你是初学者还是有一定基础的开发者,这篇文章都将为你打开一扇通往深度学习世界的大门。
|
2月前
|
机器学习/深度学习 人工智能 TensorFlow
深度学习入门:使用Python和TensorFlow构建你的第一个神经网络
【8月更文挑战第31天】 本文是一篇面向初学者的深度学习指南,旨在通过简洁明了的语言引导读者了解并实现他们的第一个神经网络。我们将一起探索深度学习的基本概念,并逐步构建一个能够识别手写数字的简单模型。文章将展示如何使用Python语言和TensorFlow框架来训练我们的网络,并通过直观的例子使抽象的概念具体化。无论你是编程新手还是深度学习领域的新兵,这篇文章都将成为你探索这个激动人心领域的垫脚石。
|
2月前
|
机器学习/深度学习 自动驾驶 算法框架/工具
深度学习中的卷积神经网络(CNN)入门
【8月更文挑战第31天】 本文旨在通过浅显易懂的方式,引导初学者步入卷积神经网络(CNN)的神秘世界。我们将从CNN的基础概念出发,逐步深入到其在图像处理中的应用实例,最后通过一个简单的Python代码示例,展示如何实现一个基础的CNN模型。无论你是编程新手还是深度学习领域的初探者,这篇文章都将为你打开一扇了解和掌握CNN的大门。