NumPy 教程 之 NumPy 线性代数 5
NumPy 线性代数
NumPy 提供了线性代数函数库 linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明:
函数 描述
dot 两个数组的点积,即元素对应相乘。
vdot 两个向量的点积
inner 两个数组的内积
matmul 两个数组的矩阵积
determinant 数组的行列式
solve 求解线性矩阵方程
inv 计算矩阵的乘法逆矩阵
numpy.linalg.det()
numpy.linalg.det() 函数计算输入矩阵的行列式。
行列式在线性代数中是非常有用的值。 它从方阵的对角元素计算。 对于 2×2 矩阵,它是左上和右下元素的乘积与其他两个的乘积的差。
换句话说,对于矩阵[[a,b],[c,d]],行列式计算为 ad-bc。 较大的方阵被认为是 2×2 矩阵的组合。
实例
import numpy as np
a = np.array([[1,2], [3,4]])
print (np.linalg.det(a))
输出结果为:
-2.0
实例
import numpy as np
b = np.array([[6,1,1], [4, -2, 5], [2,8,7]])
print (b)
print (np.linalg.det(b))
print (6(-27 - 58) - 1(47 - 52) + 1(48 - -2*2))
输出结果为:
[[ 6 1 1]
[ 4 -2 5]
[ 2 8 7]]
-306.0
-306